We consider the capacity of entanglement in models related with the gravitational phase transitions. The capacity is labeled by the replica parameter which plays a similar role to the inverse temperature in thermodynamics. In the end of the world brane model of a radiating black hole the capacity has a peak around the Page time indicating the phase transition between replica wormhole geometries of different types of topology. Similarly, in a moving mirror model describing Hawking radiation the capacity typically shows a discontinuity when the dominant saddle switches between two phases, which can be seen as a formation of island regions. In either case we find the capacity can be an invaluable diagnostic for a black hole evaporation process.
We consider the capacity of entanglement as a probe of the Hawking radiation in a two-dimensional dilaton gravity coupled with conformal matter of large degrees of freedom. A formula calculating the capacity is derived using the gravitational path integral, from which we speculate that the capacity has a discontinuity at the Page time in contrast to the continuous behavior of the generalized entropy. We apply the formula to a replica wormhole solution in an eternal AdS black hole coupled to a flat non-gravitating bath and show that the capacity of entanglement is saturated by the thermal capacity of the black hole in the high temperature limit.
The International Linear Collider (ILC) is on the table now as a new global energyfrontier accelerator laboratory taking data in the 2030's. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.