The microbial ecology of nitrifying bacteria in various types of wastewater treatment processes and the dynamic response of the microbial ecology in biofilms were investigated using fluorescence in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. Nitrifying bacteria were found to exhibit various organizational forms under different conditions of substrate composition and concentration. Ammonia-oxidizing bacteria were dominant in ammonia-rich inorganic wastewater, while heterotrophic bacteria and ammonia-oxidizing bacteria were localized at different positions in the biofilm in organic wastewater. The dynamics of the microbial ecology in the biofilm with regard to the spatial distribution of ammonia-oxidizing bacteria and heterotrophic bacteria caused by a gradual change in substrate composition was successfully monitored by FISH analysis.
Diverse microorganisms form complex microbial communities and usually exist in biofilm communities in both natural environments and engineered systems such as a wastewater treatment process. However, the conventional approach to investigate microbial ecology has not contributed to the understanding and clarification of the structure and function of biofilm communities. Some effective methods have been developed to investigate phylogenetic affiliations, metabolic activities and genetic activities in biofilm communities at the single-cell level. These techniques have been contributing to a better understanding of the spatial organization of biofilm communities and activities in engineered systems. However, further effort is needed to set out the general rules governing community development in biofilm communities and to advance the process performance of engineered systems. This review describes advances and limitations in methodology, particularly focusing on fluorescence in situ hybridization (FISH) and related techniques and the application of these methods to nitrifying biofilms in wastewater treatment processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.