These findings suggest that endothelium-dependent dilatation of the resistance coronary arteries is defective in patients with anginal chest pain and normal coronary arteries, which may contribute to the altered regulation of myocardial perfusion in these patients.
The results of this study suggest that endothelium-dependent dilation of coronary arteries evoked by acetylcholine may be decreased with aging in humans.
This study was designed to answer two questions. First, does the left ventricular contractile dysfunction resulting from mitral regurgitation (MR) reflect a primary defect in the cardiac muscle cell? Second, what is the basis for any change in cellular contractile function that might be observed? Left ventricular volume overload was produced in 10 dogs by catheter transection of mitral chordae tendineae. Three months later in these and in seven control dogs, left ventricular contractile function was characterized by the end-ejection stress-volume relation (EESVR). Investigators who were blinded to these results then characterized the contractile performance of cardiac muscle cells, or cardiocytes, from these same left ventricles in terms of the viscosity (graded external load)-velocity relation. Finally, the tissue and cellular components of these same left ventricles were analyzed morphometrically. Both the left ventricles from the MR group and their constituent cardiocytes showed marked contractile abnormalities. By matching ventricles with cells from the same MR dogs, ventricular EESVR was correlated with cardiocyte peak sarcomere shortening velocity (SSV). The correlation coefficient between EESVR and SSV was 0.63, but between a size-independent measure of active ventricular stiffness and SSV, it was 0.88. No change in left ventricular interstitial volume fraction was found in MR dogs, but both ventricular and cellular contractile dysfunction strongly correlated with a decreased volume fraction of cardiocyte myofibrils. Last, in an attempt to relate the degree of contractile dysfunction to the hypertrophic response, left ventricular mass in the MR dogs was correlated with both cellular and ventricular contractile indexes; no significant correlation was found. Three conclusions are warranted by these studies. First, chronic left ventricular volume overload from mitral regurgitation leads to contractile defects at both the ventricular and cellular levels, the extent of which correlates well in individual animals. Second, no quantitative interstitial change resulted from MR. Taken together, these two findings strongly suggest that the contractile defect is intrinsic to the cardiocyte. Third, while the contractile abnormality in MR remains undefined, the most basic defects appear to be a combination of myofibrillar loss with the failure of compensatory hypertrophy to occur in response to progressive decrements in cellular and ventricular function.
Contractile dysfunction has been demonstrated in many previous studies of experimental right ventricular pressure-overload hypertrophy; however, given the complex changes that occur both in the cardiac muscle cell and in the multiple components of the cardiac interstitium, it is not clear whether the contractile dysfunction observed is an intrinsic property of the cardiac muscle cell or whether it is the result of a mechanically normal cardiac muscle cell contracting within an abnormal interstitial environment. The purpose of the present study was to examine the contractile behavior of cardiac muscle cells, or cardiocytes, isolated from seven cat right ventricles that were pressure-overloaded by banding the pulmonary artery; right ventricular cardiocytes from seven sham-operated cats served as controls. Cardiocytes were obtained from these cats via standard cell isolation procedures; contractile function of the cardiocytes in response to graded viscous external loads was defined by laser diffraction. The cells were stimulated to contract at a frequency of 0.25 Hz, using 100-microA direct current pulses of alternating polarity. Hypertrophied right ventricular cardiocytes obtained from banded cats showed marked systolic contractile abnormalities in comparison with right ventricular cardiocytes from sham-operated cats. The peak velocity of sarcomere shortening for the control and hypertrophied cardiocytes in 1-cp superfusate was 3.6 +/- 0.2 and 2.1 +/- 0.1 microns/sec, respectively (p less than 0.001); the maximum extent of sarcomere shortening for the control and hypertrophied cardiocytes was 0.21 +/- 0.01 and 0.14 +/- 0.01 microns, respectively (p less than 0.001). Further, the time to peak shortening in the 1-cp superfusate was significantly longer for the hypertrophied cardiocytes (150.1 +/- 3.3 versus 160.4 +/- 3.7 msec; p less than 0.04). When the relengthening properties of the cells were examined in the 1-cp superfusate, there were significant differences between cardiocyte groups. The peak rate of sarcomere relengthening was 3.5 +/- 0.2 microns/sec in the control cardiocytes and 2.2 +/- 0.17 microns/sec in the hypertrophied cardiocytes (p less than 0.001). Similarly, the time to peak velocity of sarcomere relengthening (48.8 +/- 1.8 versus 57.9 +/- 2.9 msec) and the time to 50% maximal sarcomere relengthening (57.1 +/- 3.1 versus 67.1 +/- 3.1 msec) were both significantly prolonged for the hypertrophied cardiocytes (p less than 0.02). This study shows for the first time that the contractile defect in this model of right ventricular pressure-overload hypertrophy is intrinsic to the cardiac muscle cell itself. This finding provides a basis for further, more focused investigations designed to determine the mechanisms responsible for the contractile dysfunction observed in this form of experimental cardiac hypertrophy.
We have shown that increased microtubules cause myocyte contractile dysfunction in feline right ventricular pressure-overload hypertrophy. To investigate the association between the progression of cardiac hypertrophy and microtubules and to delineate the role of microtubules in contractile defects in hypertrophied myocytes, we assessed the amounts of free and polymerized tubulin proteins, using Western blot analysis and immunofluorescence micrograph, and evaluated the sarcomere mechanics of myocytes isolated from rats with pressure-overload left ventricular (LV) hypertrophy. Total and polymerized tubulins were progressively and persistently increased in LV after the imposition of pressure overload. The increase in microtubules was associated with the development and progression of hypertrophy and not the immediate response to the stress loading to the myocardium. The contractile function of hypertrophied myocytes was depressed in parallel with the increase in microtubules. Depolymerization of microtubules normalized the initially depressed LV myocyte contractile function. Thus the progressive increase of microtubule density during LV hypertrophy due to persistent pressure overloading to the myocardium may cause the consequent myocyte contractile dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.