Adeno-associated virus (AAV)-based vectors are being tested in animal models as viable treatments for glioma and neurodegenerative disease and could potentially be employed to target a variety of central nervous system disorders. The relationship between dose of injected vector and its resulting distribution in brain tissue has not been previously reported nor has the most efficient method of delivery been determined. Here we report that convection-enhanced delivery (CED) of 2.5 x 10(8), 2.5 x 10(9), or 2.5 x 10(10) particles of AAV-thymidine kinase (AAV-TK) into rat brain revealed a clear dose response. In the high-dose group, a volume of 300 mm3 of brain tissue was partially transduced. Results showed that infusion pump and subcutaneous osmotic pumps were both capable of delivering vector via CED and that total particle number was the most important determining factor in obtaining efficient expression. Results further showed differences in histopathology between the delivery groups. While administration of vector using infusion pump had relatively benign effects, the use of osmotic pumps resulted in notable toxicity to the surrounding brain tissue. To determine tissue distribution of vector following intracranial delivery, PCR analysis was performed on tissues from rats that received high doses of AAV-TK. Three weeks following CED, vector could be detected in both hemispheres of the brain, spinal cord, spleen, and kidney.
Parkinson's disease (PD) is a neurodegenerative disorder in which pigmented midbrain neurons progressively die producing a dopamine (DA) deficit in the striatum, which manifests as an akinetic movement disorder. Experimentally induced striatal DA depletion in animals is a valid model of parkinsonism. The capacity of certain substances to damage catecholaminergic neurons has been used extensively to produce DA deficiency in animals. This unit describes methods for inducing parkinsonism in nonhuman primates and rodents using the neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA). Additionally, procedures for evaluating the animals are presented.
A rat model of PD with a progressive and extensive dopamine lesion was successfully made by intrastriatal CED of 6-OHDA. In this model, the therapeutic value can be assessed using behavioral, biochemical, and histochemical measurements. The delay of nigral neuronal death with respect to the time of 6-OHDA administration may provide a therapeutic window for testing neuroprotective strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.