Macromolecular
crowding, a solution state with high macromolecular
concentrations, was used to promote the crystallization-driven self-assembly
of enzymatically synthesized cellulose oligomers. Cellulose oligomers
were synthesized via cellodextrin phosphorylase-catalyzed enzymatic
reactions in the concentrated solutions of water-soluble polymers,
such as dextran, poly(ethylene glycol), and poly(N-vinylpyrrolidone). The reaction mixtures were transformed into cellulose
oligomer hydrogels composed of well-grown crystalline nanoribbon networks
irrespective of the polymer species. This method was successfully
applied in the one-pot preparation of double network hydrogels composed
of the nanoribbons and physically cross-linked gelatin molecules through
the simple control of reaction temperatures, demonstrating the superior
mechanical properties of the composite hydrogels. Our concept that
promotes the growth of self-assembled architectures under macromolecular
crowding conditions demonstrates a new avenue into developing novel
hydrogel materials.
The use of supramolecular gel media for the crystallization of active pharmaceutical ingredients (APIs) is of interest for controlling crystal size, morphology, and polymorphism, as these features determine the performance of pharmaceutical formulations. In contrast to supramolecular systems prepared from synthetic gelators, herein, supramolecular metallogels based on a natural polyphenol (tannic acid) are used for the crystallization of APIs. The gel-grown API crystals exhibit considerable differences in size, morphology, and polymorphism when compared with those formed in solutions. These physical features can also be tailored by varying the gel composition and additives, suggesting an influence of the gel medium on the crystallization outcomes. Furthermore, these gel-API crystal composites can be used for sustained drug release, indicating their potential as drug delivery systems. The facile preparation of these supramolecular gels and the use of naturally abundant components in their synthesis provide a generic platform for studying gel-mediated crystallization of diverse APIs.
Crystalline poly- and oligosaccharides such as cellulose can form extremely robust assemblies, whereas the construction of self-assembled materials from such molecules is generally difficult due to their complicated chemical synthesis and low solubility in solvents. Enzyme-catalyzed oligomerization-induced self-assembly has been shown to be promising for creating nanoarchitectured crystalline oligosaccharide materials. However, the controlled self-assembly into organized hierarchical structures based on a simple method is still challenging. Herein, we demonstrate that the use of organic solvents as small-molecule additives allows for control of the oligomerization-induced self-assembly of cellulose oligomers into hierarchical nanoribbon network structures. In this study, we dealt with the cellodextrin phosphorylase-catalyzed oligomerization of phosphorylated glucose monomers from ᴅ-glucose primers, which produce precipitates of nanosheet-shaped crystals in aqueous solution. The addition of appropriate organic solvents to the oligomerization system was found to result in well-grown nanoribbon networks. The organic solvents appeared to prevent irregular aggregation and subsequent precipitation of the nanosheets via solvation for further growth into the well-grown higher-order structures. This finding indicates that small-molecule additives provide control over the self-assembly of crystalline oligosaccharides for the creation of hierarchically structured materials with high robustness in a simple manner.
The dispersion stabilization of colloidal particles and subsequent construction of functional materials are of great interest in areas ranging from colloid chemistry to materials science. A promising strategy is the spatial immobilization of colloidal particles within gel scaffolds. However, conventional gels readily deform and even collapse when changes in environmental conditions occur. Herein, we describe the enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically stable nanoribbon network hydrogels composed of crystalline cellulose oligomers in which cellulose nanocrystals (CNCs) as model colloidal particles are immobilized spatially. The stiffness of the hydrogels increased with the amount of CNCs incorporated. Filling the void space of the hydrogels with hydrophobic polymers resulted in polymer nanocomposites with excellent mechanical properties. The nanoribbon networks will be useful for demonstrating the potential functions of colloidal particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.