Electroholography enables the projection of three-dimensional (3-D) images using a spatial-light modulator. The extreme computational complexity and load involved in generating a hologram make realtime production of holograms difficult. Many methods have been proposed to overcome this challenge and realize real-time reconstruction of 3-D motion pictures. We review two real-time reconstruction techniques for aerial-projection holographic displays. The first reduces the computational load required for a hologram by using an image-type computer-generated hologram (CGH) because an image-type CGH is generated from a 3-D object that is located on or close to the hologram plane. The other technique parallelizes CGH calculation via a graphics processing unit by exploiting the independence of each pixel in the holographic plane. © The Authors.Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
We propose a phase retrieval method using axial diffraction patterns under planar and spherical wave illuminations. The proposed method uses a ptychographic iterative engine (PIE) for the phase retrieval algorithm. The proposed approach uses multiple diffraction patterns. Thus, adjusting the alignment of each diffraction pattern is mandatory, and we propose a method to adjust the alignment. In addition, a random selection of the measured diffraction patterns is used to further accelerate the convergence of the PIE-based optimization. To confirm the effectiveness of the proposed method, we compare the conventional and proposed methods using a simulation and optical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.