The association rule mining (ARM) is an important method to solve personalized recommendation problem in e-commerce. However, when applied in personalized recommendation system in mobile ecommerce(MEC), traditional ARMs are with low mining efficiency and accuracy. To enhance the efficiency in obtaining frequent itemsets and the accuracy of rules mining, this paper proposes an algorithm based on matrix and interestingness, named MIbARM, which only scans the database once, can deletes infrequent items in the mining process to compressing searching space. Finally, experiments among Apriori, CBAR and BitTableFI with two synthetic datasets and 64 different parameter combinations were carried out to verify MIbARM. The results show that the MIbARM succeed to avoid redundant candidate itemsets and significantly reduce the number of redundant rules, and it is efficient and effective for personalized recommendation in MEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.