A coupled model consisting of a multilayer urban canopy model and a building energy analysis model has been developed to investigate the diurnal variations of outdoor air temperature in the office areas of Tokyo, Japan. Observations and numerical experiments have been performed for the two office areas in Tokyo. The main results obtained in this study are as follows. The coupled model has accurately simulated the air temperature for a weekday case in which released waste heat has been calculated from the energy consumption and cooling load in the buildings. The model has also simulated the air temperature for a holiday case. However, the waste heat from the buildings has little influence on the outdoor temperatures and can be neglected because of the low working activity in the buildings. The waste heat from the air conditioners has caused a temperature rise of 1°-2°C or more on weekdays in the Tokyo office areas. This heating promotes the heat-island phenomenon in Tokyo on weekdays. Thus, it is shown that the energy consumption process (mainly with air conditioning) in buildings should be included in the modeling of summertime air temperature on weekdays in urban areas.
Positron emission tomography (PET) with 15O tracers provides essential information in patients with cerebral vascular disorders, such as cerebral blood flow (CBF), oxygen extraction fraction (OEF), and metabolic rate of oxygen (CMRO2). However, most of techniques require an additional C15O scan for compensating cerebral blood volume (CBV). We aimed to establish a technique to calculate all functional images only from a single dynamic PET scan, without losing accuracy or statistical certainties. The technique was an extension of previous dual-tracer autoradiography (DARG) approach, but based on the basis function method (DBFM), thus estimating all functional parametric images from a single session of dynamic scan acquired during the sequential administration of H215O and 15O2. Validity was tested on six monkeys by comparing global OEF by PET with those by arteriovenous blood sampling, and tested feasibility on young healthy subjects. The mean DBFM-derived global OEF was 0.57±0.06 in monkeys, in an agreement with that by the arteriovenous method (0.54±0.06). Image quality was similar and no significant differences were seen from DARG; 3.57%±6.44% and 3.84%±3.42% for CBF, and −2.79%±11.2% and −6.68%±10.5% for CMRO2. A simulation study demonstrated similar error propagation between DBFM and DARG. The DBFM method enables accurate assessment of CBF and CMRO2 without additional CBV scan within significantly shortened examination period, in clinical settings.
BackgroundPatient movement has been considered an important source of errors in cardiac PET. This study was aimed at evaluating the effects of such movement on myocardial blood flow (MBF) and perfusable tissue fraction (PTF) measurements in intravenous 15O-water PET.MethodsNineteen 15O-water scans were performed on ten healthy volunteers and three patients with severe cardiac dysfunction under resting conditions. Motions of subjects during scans were estimated by monitoring locations of markers on their chests using an optical motion-tracking device. Each sinogram of the dynamic emission frames was corrected for subject motion. Variation of regional MBF and PTF with and without the motion corrections was evaluated.ResultsIn nine scans, motions during 15O-water scan (inter-frame (IF) motion) and misalignments relative to the transmission scan (inter-scan (IS) motion) larger than the spatial resolution of the PET scanner (4.0 mm) were both detected by the optical motion-tracking device. After correction for IF motions, MBF values changed from 0.845 ± 0.366 to 0.780 ± 0.360 mL/minute/g (P < .05). In four scans with only IS motion detected, PTF values changed significantly from 0.465 ± 0.118 to 0.504 ± 0.087 g/mL (P< .05), but no significant change was found in MBF values.ConclusionsThis study demonstrates that IF motion during 15O-water scan at rest can be source of error in MBF measurement. Furthermore, estimated MBF is less sensitive than PTF values to misalignment between transmission and 15O-water emission scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.