Layered MAX phases are exfoliated into 2D single layers and multilayers, so-called MXenes. Using fi rst-principles calculations, the formation and electronic properties of various MXene systems, M 2 C (M = Sc, Ti, V, Cr, Zr, Nb, Ta) and M 2 N (M = Ti, Cr, Zr) with surfaces chemically functionalized by F, OH, and O groups, are examined. Upon appropriate surface functionalization, Sc 2 C, Ti 2 C, Zr 2 C, and Hf 2 C MXenes are expected to become semiconductors. It is also derived theoretically that functionalized Cr 2 C and Cr 2 N MXenes are magnetic. Thermoelectric calculations based on the Boltzmann theory imply that semiconducting MXenes attain very large Seebeck coefficients at low temperatures.
Nanoparticles under a few nanometres in size have structures and material functions that differ from the bulk because of their distinct geometrical shapes and strong quantum confinement. These qualities could lead to unique device applications. Our mass spectral analysis of CdSe nanoparticles reveals that (CdSe)(33) and (CdSe)(34) are extremely stable: with a simple solution method, they grow in preference to any other chemical compositions to produce macroscopic quantities. First-principles calculations predict that these are puckered (CdSe)(28)-cages, with four- and six-membered rings based on the highly symmetric octahedral analogues of fullerenes, accommodating either (CdSe)(5) or (CdSe)(6) inside to form a three-dimensional network with essentially heteropolar sp(3)-bonding. This is in accordance with our X-ray and optical analyses. We have found similar mass spectra and atomic structures in CdS, CdTe, ZnS and ZnSe, demonstrating that mass-specified and macroscopically produced nanoparticles, which have been practically limited so far to elemental carbon, can now be extended to a vast variety of compound systems.
Metal-organic microporous materials (MOMs) have attracted wide scientific attention owing to their unusual structure and properties, as well as commercial interest due to their potential applications in storage, separation and heterogeneous catalysis. One of the advantages of MOMs compared to other microporous materials, such as activated carbons, is their ability to exhibit a variety of pore surface properties such as hydrophilicity and chirality, as a result of the controlled incorporation of organic functional groups into the pore walls. This capability means that the pore surfaces of MOMs could be designed to adsorb specific molecules; but few design strategies for the adsorption of small molecules have been established so far. Here we report high levels of selective sorption of acetylene molecules as compared to a very similar molecule, carbon dioxide, onto the functionalized surface of a MOM. The acetylene molecules are held at a periodic distance from one another by hydrogen bonding between two non-coordinated oxygen atoms in the nanoscale pore wall of the MOM and the two hydrogen atoms of the acetylene molecule. This permits the stable storage of acetylene at a density 200 times the safe compression limit of free acetylene at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.