In order to investigate distributed quantum computation under restricted
network resources, we introduce a quantum computation task over the butterfly
network where both quantum and classical communications are limited. We
consider deterministically performing a two-qubit global unitary operation on
two unknown inputs given at different nodes, with outputs at two distinct
nodes. By using a particular resource setting introduced by M. Hayashi [Phys.
Rev. A \textbf{76}, 040301(R) (2007)], which is capable of performing a swap
operation by adding two maximally entangled qubits (ebits) between the two
input nodes, we show that unitary operations can be performed without adding
any entanglement resource, if and only if the unitary operations are locally
unitary equivalent to controlled unitary operations. Our protocol is optimal in
the sense that the unitary operations cannot be implemented if we relax the
specifications of any of the channels. We also construct protocols for
performing controlled traceless unitary operations with a 1-ebit resource and
for performing global Clifford operations with a 2-ebit resource.Comment: 12 pages, 12 figures, the second version has been significantly
expanded, and author ordering changed and the third version is a minor
revision of the previous versio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.