A chemical synthesis of a core fucose containing N-glycan was achieved. Asparagine was introduced at an early stage of the synthesis, and the sugar chain was convergently elongated. As for the fragment synthesis, we reinvestigated α-sialylation, β-mannosylation, and N-glycosylation to reveal that precise temperature control was essential for these glycosylations. Intermolecular hydrogen bonds involving acetamide groups were found to reduce the reactivity in glycosylations: the protection of NHAc as NAc dramatically improved the reactivity. The dodecasaccharide-asparagine framework was constructed via the (4 + 4) glycosylation and the (4 + 8) glycosylation using the tetrasaccharide donor and the tetrasaccharide-asparagine acceptor. An ether-type solvent enhanced the yields of these key glycosylations between large substrates. After the whole deprotection of the dodecasaccharide, the target N-glycan was obtained.
Co‐assembling vaccines composed of a lipidated HER2‐derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3CSK4, α‐GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen‐specific immunostimulation properties, observed in reported self‐adjuvanting vaccine candidates, by using self‐assembly and adjuvant‐conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co‐assembly with lipidated CH401, which boosted the anti‐CH401 IgG and IgM production. In particular, α‐GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co‐assembling vaccine design opens the door for efficient and practical self‐adjuvanting vaccine development.
α‐Methyl‐l‐tyrosine (AMT) has a high affinity for the cancer‐specific l‐type amino acid transporter 1 (LAT1). Therefore, we established an anti‐cancer therapy, with 211At‐labeled α‐methyl‐l‐tyrosine (211At‐AAMT) as a carrier of 211At into tumors. 211At‐AAMT had high affinity for LAT1, inhibited tumor cell growth, and induced DNA double‐stranded breaks in vitro. We evaluated the accumulation of 211At‐AAMT in vivo and the role of LAT1. Treatment with 0.4 MBq/mouse 211At‐AAMT inhibited tumor growth in the PANC‐1 tumor model and 1 MBq/mouse 211At‐AAMT inhibited metastasis in the lung of the B16F10 metastasis model. Our results suggested that 211At would be useful for anti‐cancer therapy and that LAT1 is suitable as a target for radionuclide therapy.
Sialyl-Tn (STn) is a tumor-associated carbohydrate antigen (TACA) rarely observed on healthy tissues. We synthesized two fully synthetic N-acetyl and N-propionyl STn trimer (triSTn) vaccines possessing a T-helper epitope and a TLR2 agonist, since the clustered STn antigens are highly expressed on many cancer cells. Immunization of both vaccines in mice induced the anti-triSTn IgG antibodies, which recognized triSTn-expressing cell lines PANC-1 and HepG2. The N-propionyl triSTn vaccine induced the triSTn-specific IgGs, while IgGs induced by the N-acetyl triSTn vaccine were less specific. These results illustrated that N-propionyl triSTn is a valuable unnatural TACA for anticancer vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.