To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye.
FCM-type fuzzy clustering approaches are closely related to Gaussian Mixture Models (GMMs) and the objective function of Fuzzy c-Means with regularization by K-L information (KFCM) is optimized by an EM-like algorithm. In this paper, we propose to apply probabilistic PCA mixture models to linear clustering following the discussion on the relationship between Local PCA and linear fuzzy clustering. Although the proposed method is a kind of the constrained model of KFCM, the algorithm includes the Fuzzy c-Varieties (FCV) algorithm as a special case, and the algorithm can be regarded as a modified FCV algorithm with regularization by K-L information.
This paper proposes Treemap-based visualization for supporting cluster analysis of multi-dimensional data. It is important to grasp data distribution in a target dataset for such tasks as machine learning and cluster analysis. When dealing with multi-dimensional data such as statistical data and document datasets, dimensionality reduction algorithms are usually applied to project original data to lower-dimensional space. However, dimensionality reduction tends to lose the characteristics of data in the original space. In particular, the border between different data groups could not be represented correctly in lower-dimensional space. To overcome this problem, the proposed visualization method applies Fuzzy c-Means to target data and visualizes the result on the basis of the highest and the second-highest membership values with Treemap. Visualizing the information about not only the closest clusters but also the second closest ones is expected to be useful for identifying objects around the border between different clusters, as well as for understanding the relationship between different clusters. A prototype interface is implemented, of which the effectiveness is investigated with a user experiment on a news articles dataset. As another kind of text data, a case study of applying it to a word embedding space is also shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.