ABSTRACT. Despite its explosive properties and toxicity to both animals and humans, diethyl ether is an agent long used in Japan in the anaesthesia jar method of rat anaesthetises. However, in response to a recent report from the Science Council of Japan condemning diethyl ether as acceptable practice, we searched for an alternative rat anaesthesia method that provided data continuous with pre-existing regular toxicology studies already conducted under diethyl ether anaesthesia. For this, we examined two candidates; 30% isoflurane diluted with propylene glycol and pentobarbitone. Whereas isoflurane is considered to be one of the representatives of modern volatile anaesthetics, the method of propylene glycol-diluted 30% isoflurane used in this study was our modification of a recently reported method revealed to have several advantages as an inhalation anaesthesia. Intraperitoneal pentobarbitone has long been accepted as a humane method in laboratory animal anaesthesiology. These 2 modalities were scrutinized in terms of consistency of haematology and blood chemistry with previous results using ether. We found that pentobarbitone required a much longer induction time than diethyl ether, which is suspected to be the cause of fluctuations in several haematological and blood chemical results. Conversely, only calcium ion concentration showed a slight difference from traditional results in the case of 30% isoflurane. Additionally, serum prolactin and corticosterone levels indicated that 30% isoflurane induced less stress than ether, confirming that 30% isoflurane can both provide results consistent with diethyl ether, while at the same time remove its disadvantages. As such 30% isoflurane appears to be a strong alternative anaesthetic agent for future regular toxicology studies in Japan.
Anti-atrial fibrillatory, proarrhythmic and cardiodepressive profiles of dronedarone were analyzed using the halothane-anesthetized beagle dogs (n = 4) to create a standard protocol for clarifying both efficacy and adverse effects of anti-atrial fibrillatory drugs. Intravenous administration of dronedarone hydrochloride in doses of 0.3 and 3 mg/kg over 30 s attained the peak plasma concentrations of 61 and 1248 ng/mL, respectively, reflecting sub- to supra-therapeutic ones. The low dose decreased the left ventricular contraction and mean blood pressure, which were enhanced at the high dose. The high dose also decreased the heart rate and cardiac output, but increased the total peripheral resistance and left ventricular end-diastolic pressure, showing its potent cardiodepressive profile. Moreover, the high dose delayed the atrioventricular nodal and intraventricular conductions in addition to the ventricular repolarization, suggesting its inhibitory action on the Ca, Na and K channels in the in situ heart, respectively. The high dose also prolonged the effective refractory period 1.9 times greater in the atrium than in the ventricle, explaining its clinically demonstrated efficacy against the atrial arrhythmias. Dronedarone significantly prolonged the T-T in a dose-related manner with a tendency to prolong the terminal repolarization period and J-Tc, indicating considerable risk to induce torsade de pointes. No significant change was detected in the P-wave duration by either dose, indicating the lack of effect on the atrial Na channel in vivo. The current experimental protocol and the results of dronedarone can be used as a guide for safety pharmacological evaluation of new anti-atrial fibrillatory drugs.
The aim of this study was to assess the cardiovascular effects of KUR-1246 (CAS 194785-31-4, (-)-bis(2-{[(2S)-2-({(2R)-2-hydroxy-2-[4-hydroxy-3-(2-hydroxyethyl) phenyl] ethyl}amino)-1,2,3,4-tetrahydronaphthalen-7-yl]oxy}-N,N-dimethylacetamide)monosulfate), a new beta2-adrenoceptor agonist tocolytic agent. In conscious dogs, the intravenous administration of KUR-1246 at 0.1 and 1 microg/kg had no effects on blood pressure, heart rate or femoral artery blood flow. KUR-1246 at 10 and 100 microg/kg significantly decreased blood pressure and increased heart rate. In the electrocardiograms, KUR-1246 did not affect QT intervals or QTc. In addition, the cardiac effects of KUR-1246 were evaluated in in vitro electrophysiological studies. KUR-1246 at 10 micromol/L did not affect action potential parameters (the maximal upstroke velocity, resting membrane potential, action potential amplitude and action potential durations) in isolated papillary muscles of guinea pigs or in the human ether-a-go-go related gene (HERG) tail current recorded from stably transfected human embryonic kidney (HEK) 293 cells. On the basis of these results, the effects of KUR-1246 in conscious dogs on the cardiovascular system appear to be limited to changes in blood pressure and heart rate. Therefore, KUR-1246 is unlikely to provoke ventricular arrhythmias by delaying the ventricular repolarization.
-Treatment with the selective β 3 -adrenoceptor agonist BRL 37344 increased circulating levels of alanine transaminase (ALT) and aspartate transaminase (AST) in mice without causing hepatocellular injury. To clarify whether this was a β 3 -adrenoceptor-mediated effect, the inhibitory effect of the selective β 3 -adrenoceptor antagonist SR 59230A on the increase in circulating transaminase levels induced by BRL 37344 was examined. A single intraperitoneal dose of BRL 37344 alone initially increased insulin and non-esterified fatty acid (NEFA) dose-proportionally at 0.5 hr post-dose, findings considered attributable to β 3 -adrenoceptor-stimulating effects. Levels of the gluconeogenic precursors pyruvate (PA) and lactate (LA) were increased corresponding to the change in insulin. Thereafter, glucose (GLU) level was decreased at 4 and 8 hr post-dose, suggesting disruption of glucose homeostasis. In association with these changes in glucose metabolism, transaminase levels were increased maximally at 4 hr post-dose. The transaminase changes were not accompanied by increases in circulating levels of other hepatocellular enzymes, including guanine deaminase (GUA), glutamate dehydrogenase (GLDH), and lactate dehydrogenase (LDH), or any morphological hepatocellular injury. Intraperitoneal pre-treatment with SR 59230A partly inhibited the effects of BRL 37344 alone, indicating that the increase in levels of circulating ALT by BRL 37344 was attributable to a β 3 -adrenoceptor-stimulating effect. In conclusion, the β 3 -adrenoceptor agonist BRL 37344 was shown to increase circulating transaminase levels in mice accompanied with dynamic changes in glucose metabolism. These findings suggest the possibility that circulating transaminase levels are increased as pharmacological effects of drugs disrupting glucose metabolism, and that hepatotoxic markers should be selected considering these effects to distinguish between acceptable pharmacology and toxicity.
Evaluations of locomotor activity, body temperature and gastrointestinal motility in monkeys or dogs are useful to understand effects of candidate drugs on the central nervous and gastrointestinal systems. Here we describe lessinvasive evaluation methods using the small device, nano tag ® (15×14×7 mm). Nano tag was subcutaneously implanted in cynomolgus monkeys. Gelatin capsule containing nano tag was orally administered in beagle dogs. Then body temperature and the amount of locomotor activity were simultaneously and continuously measured by nano tag and a telemetry system (PONEMAH system). The measured profiles obtained by nano tag approximately corresponded with those by the telemetry system, suggesting data obtained by nano tag are comparable to telemetry data. Moreover, nano tag could detect drug-induced changes of locomotor activity and body temperature in animals treated with caffeine, ketamine or thiopental. As to gastrointestinal motility, gastrointestinal residence time of nano tag was evaluated in dogs. The gastrointestinal residence time became shortened and extended by treatment with pilocarpine and loperamide, respectively. The proposed less-invasive methods using nano tag could help to evaluate effects of drugs on the central nervous and gastrointestinal systems in monkeys and dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.