Although attention has focused on the chemopreventive action of retinoic acid (RA) in hepatocarcinogenesis, the functional role of RA in the liver has yet to be clarified. To explore the role of RA in the liver, we developed transgenic mice expressing RA receptor (RAR) ␣-dominant negative form in hepatocytes using albumin promoter and enhancer. At 4 months of age, the RAR ␣-dominant negative form transgenic mice developed microvesicular steatosis and spotty focal necrosis. Mitochondrial -oxidation activity of fatty acids and expression of its related enzymes, including VLCAD, LCAD, and HCD, were down-regulated; on the other hand, peroxisomal -oxidation and its related enzymes, including AOX and BFE, were up-regulated. Expression of cytochrome p4504a10, cytochrome p4504a12, and cytochrome p4504a14 was increased, suggesting that -oxidation of fatty acids in microsomes was accelerated. In addition, formation of H 2 O 2 and 8-hydroxy-2-deoxyguanosine was increased. After 12 months of age, these mice developed hepatocellular carcinoma and adenoma of the liver. The incidence of tumor formation increased with age. Expression of -catenin and cyclin D1 was enhanced and the TCF-4/-catenin complex was increased, whereas the RAR ␣/ -catenin complex was decreased. Feeding on a high-RA diet reversed histological and biochemical abnormalities and inhibited the occurrence of liver tumors. These results suggest that hepatic loss of RA function leads to the development of steatohepatitis and liver tumors. In conclusion, RA plays an important role in preventing hepatocarcinogenesis in association with fatty acid metabolism and Wnt signaling. (HEPATOLOGY 2004;40:366-375.)
Since damage to DNA and other cellular molecules by reactive oxygen species ranks high as a major culprit in the onset and development of colorectal cancer, the aim of the present study is to clarify the role of antioxidant seleonoproteins including glutathione peroxidase (GPx), thioredoxin reductase (TXR) and selenoprotein P (SePP), and the effect of oxidative stress on the progression of colorectal cancer. Expression of 14 oxidative stress-related molecules in both tumorous and non-tumorous tissues in 41 patients was examined by immunohistochemistry and Western blot analysis. Expression levels of proteins modified by 4-hydroxy-2-nonenal (4-HNE), malonyldialdehyde (MDA) and 4-hydroxy-2-hexenal (4-HHE), and the positive rate of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in tumorous tissues were much higher than those in non-tumorous tissues. Glutathione (GSH) content in tumor tissues was much lower than that in non-tumorous tissues. Expression level of selenoproteins such as GPx-1, GPx-3, and SePP, which are rapidly degraded during selenium deprivation, was significantly decreased in tumorous tissues, whereas that of GPx-2, which is resistant to selenium deprivation, was increased. Expression of SePP was decreased at stage III and IV, compared to that of stage II. These data suggest that contrasting expression pattern of the antioxidant selenoproteins plays an important role in the progression of colorectal cancer.
Umbilical cord blood (UCB) is a source of hematopoietic stem cells and other stem cells, and human UCB cells have been reported to contain transplantable hepatic progenitor cells. However, the fractions of UCB cells in which hepatic progenitor cells are rich remain to be clarified. In the present study, first, the fractionated cells by CD34, CD38, and c-kit were transplanted via portal vein of NOD/SCID mice, and albumin mRNA expression was examined in livers at 1 and 3 months posttransplantation. At 1 and 3 months, albumin mRNA expression in CD34+UCB cells-transplanted livers was higher than that in CD34- cells-transplanted livers. Albumin mRNA expression in CD34+CD38+ cells-transplanted livers was higher than that in CD34+CD38- cells-transplanted [corrected] liver at 1 month. However, it was much higher [corrected] in CD34+CD38- cell-transplanted livers at 3 months. Similar expression of albumin mRNA was obtained between CD34+CD38+c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, and between CD34+CD38-c-kit+ cells- and CD34+CD38-c-kit- cells-transplanted livers, respectively. Second, fluorescence in situ hybridization and immunohistochemistry were performed to examine whether UCB cells really transdifferentiated into hepatocytes or they only fused with mouse hepatocytes. In mouse liver sections, of 1.2% cells which had human chromosomes, 0.9% cells were due to cell fusion, whereas 0.3% cells were transdifferentiated into human hepatocytes. These results suggest that CD34+UCB cells are rich fractions in hepatic progenitor cells, and that transdifferentiation from UCB cells into hepatocytes as well as cell fusion simultaneously occur in this situation.
Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SRalpha promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.