We demonstrated fast three-dimensional transmission terahertz computed tomography by using real-time line projection of intense terahertz beam generated by optical rectification in lithium niobate crystal. After emphasizing the advantage of intense terahertz pulse generation for two-dimensional spatio-temporal terahertz imaging, peak-to-peak amplitudes of pulsed terahertz electric field have been used to obtain a series of projection images at different rotation angles. Then a standard reconstruction algorithm has been employed to perform final three-dimensional reconstruction. Test samples including a medicine capsule have been investigated with a total acquisition time to only 6 minutes.
We report on a real-time terahertz (THz) impulse ranging (IPR) system based on a combination of time-of-flight measurement of pulsed THz radiation and the asynchronous-optical-sampling (ASOPS) technique. The insensitivity of THz radiation to optical scattering enables the detection of various objects having optically rough surfaces. The temporal magnification capability unique to ASOPS achieves precise distance measurements of a stationary target at an accuracy of -551 μm and a resolution of 113 μm. Furthermore, ASOPS THz IPR is effectively applied to real-time distance measurements of a moving target at a scan rate of 10 Hz. Finally, we demonstrate the application of ASOPS THz IPR to a shape measurement of an optically rough surface and a thickness measurement of a paint film, showing the promise of further expanding the application scope of ASOPS THz IPR. The reported method will become a powerful tool for nondestructive inspection of large-scale structures.
We demonstrated fast terahertz spectral computed tomography by using real-time line projection of a terahertz beam. Two types of cross-sectional images of continuously rotating samples have been measured in only a few seconds. From temporal data, a peak-to-peak sinogram and cross sections have been reconstructed using a filtered backprojection algorithm. Using fast Fourier transform from temporal data, spectral cross sections of the sample have been obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.