The rapid spread and quick transmission of the new ongoing pandemic coronavirus disease 2019 has urged the scientific community to looking for strong technology to understand its pathogenicity, transmission, and infectivity, which helps in the development of effective vaccines and therapies. Furthermore, there was a great effort to improve the performance of biosensors so that they can detect the pathogenic virus quickly, in reliable and precise way. In this context, we propose a numerical simulation to highlight the important role of the design parameters that can significantly improve the performance of the biosensor, in particular the sensitivity as well as the detection limit. Applied alternating current electrothermal (ACET) force can generate swirling patterns in the fluid within the microfluidic channel, which improve the transport of target molecule toward the reaction surface and, thus, enhance the response time of the biosensor. In this work, the ACET effect on the SARS-CoV-2 S protein binding reaction kinetics and on the detection time of the biosensor was analyzed. Appropriate choice of electrodes location on the walls of the microchannel and suitable values of the dissociation and association rates of the binding reaction, while maintaining the same affinity, with and without ACET effect, are also, discussed to enhance the total performance of the biosensor and reduce its response time. The two-dimensional equations system is solved by the finite element approach. The best performance of the biosensor is obtained in the case where the response time decreased by 61% with AC applying voltage.
In this study, we performed 3D finite element simulations on the binding reaction kinetics of SARS-CoV-2 S protein (target analyte) and its corresponding immobilized antibody (ligand) in a heterogeneous microfluidic immunoassay. Two types of biosensors with two different shapes and geometries of the reaction surface and electrodes were studied. Alternating current electrothermal (ACET) force was applied to improve the binding efficiency of the biomolecular pairs by accelerating the transport of analytes to the binding surface. The ACET force stirs the flow field, thereby reducing the thickness of the diffusion boundary layer, often developed on the reaction surface due to the slow flow velocity, low analyte diffusion coefficient, and surface reaction high rate. The results showed that the detection time of one of the biosensors can be improved by 69% under an applied voltage of 10 Vrms and an operating frequency of 100 kHz. Certain control factors such as the thermal boundary conditions as well as the electrical conductivity of the buffer solution were analyzed in order to find the appropriate values to improve the efficiency of the biosensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.