In this study, the role of selenium nanoparticles (SeNPs, 10 mg·L−1) has been investigated in modulating the negative effects of drought and heat stresses on eight bread wheat (Triticum aestivum L.) genotype seedlings. Those genotypes included Giza-168, Giza-171, Misr-1, Misr-3, Shandweel-1, Sids-1, Sids-12, and Sids-14. The study included six treatments as follows: regular irrigation with 100% Field Capacity (FC) at a temperature of 23 ± 3 °C (T1), drought stress with 60% FC (T2), heat stress of 38 °C for 5 h·day−1 (T3), foliar spray of 10 mg·L−1 of SeNPs only (T4), a combination of drought stress with foliar spray of 10 mg·L−1 of SeNPs (T5), and heat stress with foliar spray of 10 mg·L−1 of SeNPs (T6). The experiment continued for 31 days. Foliar application of SeNPs improved the plant growth, morpho-physiological and biochemical responses, and expression of stress-responsive genes in wheat (T. aestivum L.) seedlings. Overall, morpho-physiological traits such as plant height (PH), shoot fresh weight (SFW), shoot dry weight (SDW), root fresh weight (RFW), and root dry weight (RDW) of wheat genotypes grown under different conditions ranged from 25.37–51.51 cm, 3.29–5.15 g, 0.50–1.97 g, 0.72–4.21 g, and 0.11–1.23 g, respectively. From the morpho-physiological perspective, drought stress had a greater detrimental impact on wheat plants than heat stress, whereas heat stress significantly impacted the expression of stress-responsive genes. Stress responses to drought and heat varied between wheat genotypes, suggesting that different genotypes are more resilient to stress. Exogenous spraying of 10 mg·L−1 of SeNPs improved the photosynthetic pigments, photosynthetic rate, gas exchange, and transpiration rate of wheat plants and enhanced drought and heat tolerance by increasing the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) and the expression level of stress-responsive genes. Our results showed that spraying wheat seedlings with 10 mg·L−1 of SeNPs enhanced SOD activity for all genotypes as compared to the control, with the Sids-12 genotype having the highest value (196.43 U·mg−1 FW·min−1) and the Giza-168 genotype having the lowest (152.30 U·mg−1 FW·min−1). The expression of PIP1, LEA-1, HSP70, and HSP90 stress-responsive genes was more significant in tolerant genotypes (Giza-171 and Giza-168) than in sensitive ones (Misr-1 and Misr-3) in response to drought and heat stresses. Under stress conditions, the shoot and root fresh weights, photosynthetic pigment content, stomatal conductance (SC), and transpiration rate (TR) were positively correlated with plant height (PH), while root and shoot dry weights, malondialdehyde (MDA), proline, hydrogen peroxide (H2O2), and APX were negatively correlated. Multivariate analysis and biplot results revealed that genotypes Giza-168, Giza-171, Sids-12, and Sids-14 performed well in both stress situations and were classified as stress-tolerant genotypes. These best genotypes may be employed in future breeding projects as tools to face climate change. This study concluded that various physio-biochemicals and gene expression attributes under drought and heat stress could be modulated by foliar application of SeNPs in wheat genotypes, potentially alleviating the adverse effects of drought and heat stress.
Field experiments were carried out during the two successive summer seasons of 2015/2016 and 2016/2017. The experiments were accomplished in an open field located at Bader region, El-Beheira Governorate, Egypt to evaluate the effects of humic acid, indole butyric acid (IBA), and arbuscular mycorrhizal fungi (AMF) (Glomus mosseae) individually on vegetative growth, yield, and phytochemical characteristics of Hibiscus Sabdariffa (Roselle jamica). Experimental field plots were designed as randomized complete block design (RCBD). The obtained results of the two seasons, generally, showed that all treatments (HA, IBA, and AMF) individually enhanced the vegetative growth, yield of calyx, and phytochemical parameters of Roselle plants. The HA treatment was the most effective in enhancing most of the studied parameters and might be recommended for enhancing the vegetative growth, yield of calyx, and calyx phytochemical components of Roselle plants under the environmental conditions of Bader region, El-Beheira Governorate and other similar regions.
The data collected were used to study the genetic diversity in 24 bread wheat genotypes originating from genotypes ( 22) from Bahteem Gene Bank, Genetic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.