Adipose-derived stem cells (ADSCs) and the stromal vascular fraction (SVF) promote nerve regeneration. Biodegradable nerve conduits are used to treat peripheral nerve injuries, but their efficiencies are lower than those of autologous nerve grafts. This study developed biodegradable nerve conduits containing ADSCs and SVF and evaluated their facial nerve regenerating abilities in a rat model with a 7-mm nerve defect. SVF and ADSCs were individually poured into nerve conduits with polyglycolic acid-type I collagen as a scaffold (ADSCs and SVF groups). The conduits were grafted on to the nerve defects. As the control, the defect was bridged with polyglycolic acid-collagen nerve conduits without cells. At 13 weeks, after transplantation, the regenerated nerves were evaluated physiologically and histologically. The compound muscle action potential of the SVF group was significantly higher in amplitude than that of the control group. Electron microscopy showed that the axon diameter of the SVF group was the largest, followed by the ADSC group and control group with significant differences among them. The SVF group had the largest fiber diameter, followed by the ADSC group and control group with significant differences among them. The ADSC group had the highest myelin thickness, followed by the SVF group and control group with significant differences among them. Identical excellent promoting effects on nerve regeneration were observed in both the ADSC and SVF groups. Using SVF in conduits was more practical than using ADSCs because only the enzymatic process was required to prepare SVF, indicating that SVF could be more suitable to induce nerve regeneration.
IntroductionPolyglycolic acid (PGA) nerve conduits, an artificial biodegradable nerve regeneration-inducing tube currently used in clinical practice, are effective in regenerating peripheral nerves. Dedifferentiated fat (DFAT) cells differentiate into various cells including adipocytes, osteoblasts, chondrocytes, skeletal muscle cells, and myofibroblasts, when cultured in appropriate differentiation-inducing conditioned culture medium. This study made a hybrid artificial nerve conduit by filling a PGA conduit with DFAT cells, applied the conduit to a rat facial nerve defect model, and investigated the facial nerve regenerative ability of the conduit.MethodsUnder inhalational anesthesia, the buccal branch of the facial nerve in Lewis rats was exposed, and a 7-mm nerve defect was created. PGA nerve conduits were filled with DFAT cells, which were prepared from rat subcutaneous adipose tissue with type I collagen as a scaffold, and then grafted into the nerve defect sites in rats with a microscope (DFAT group) (n = 10). In other rats, PGA artificial nerve conduits alone were similarly grafted into the nerve defect sites (the control group) (n = 10). Reinnervation was confirmed at 13 weeks postoperatively by a retrograde tracer, followed by histological and physiological comparative studies.ResultsThe mean number of myelinated fibers was significantly higher in DFAT group (1605 ± 806.23) than in the control group (543.6 ± 478.66). Myelin thickness was also significantly lager in DFAT group (0.57 ± 0.17 μm) than in the control group.(0.46 ± 0.14 μm). Although no significant difference was found in the amplitude of compound muscle action potential (CMAP) between DFAT group (2.84 ± 2.47 mV) and the control group (0.88 ± 0.56 mV), whisker motion was lager in DFAT group (9.22° ± 0.65°) than in the control group (1.9° ± 0.84°).ConclusionsDFAT cell-filled PGA conduits were found to promote nerve regeneration in an experimental rat facial nerve defect model.
Supplemental Digital Content is available in the text.
BackgroundThe lack of a clinically relevant animal model for facial nerve research is a challenge. The goal of this study was to investigate the anatomy of the ovine facial and hypoglossal nerves to establish a clinically relevant facial nerve research model.Materials and methodsSix cadaver female Merino sheep (33.5 ± 3 kg, approximately 3 years old) and three anesthetized female Merino sheep (30 ± 3 kg, approximately 3 years old) were used. In cadaver sheep, a right side preauricular to submandibular incision was made. Dimensions of the face, neck, and length of facial nerve were measured. In anesthetized sheep, each facial nerve branch and hypoglossal nerve in the right side was stimulated. The number of myelinated fibers was analyzed histologically.ResultsThe facial nerve exited the stylomastoid foramen and divided into upper and lower branches. The lower branch then subdivided into buccal and marginal mandibular branches. The hypoglossal nerve was observed behind the digastric posterior belly. Stimulation revealed the temporal, zygomatic, buccal, marginal mandibular, and cervical branch innervated the forehead, orbicularis, upper lip and nasal, lower lip, and platysma, respectively. The number of myelinated fibers of the main trunk, upper, buccal, lower branch, and hypoglossal nerve was 11 350 ± 1851, 4766 ± 1000, 5107 ± 218, 3159 ± 450, and 7604 ± 636, respectively. The length of the main trunk was 9.2 ± 1.5 mm, and distance of the marginal mandibular branch to the facial artery was 94 ± 6.8 mm.ConclusionsDue to the similarity in nerve anatomy and innervation, the ovine model can be used as a clinically relevant and suitable model for facial nerve research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.