Physical exercise has potent therapeutic and preventive effects against metabolic disorders. A number of studies have suggested that 5'-AMP-activated protein kinase (AMPK) plays a pivotal role in regulating carbohydrate and lipid metabolism in contracting skeletal muscles, while several genetically manipulated animal models revealed the significance of AMPK-independent pathways. To elucidate significance of AMPK and AMPK-independent signals in contracting skeletal muscles, we conducted a metabolomic analysis that compared the metabolic effects of 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) stimulation with the electrical contraction ex vivo in isolated rat epitrochlearis muscles, in which both α1- and α2-isoforms of AMPK and glucose uptake were equally activated. The metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry detected 184 peaks and successfully annotated 132 small molecules. AICAR stimulation exhibited high similarity to the electrical contraction in overall metabolites. Principal component analysis (PCA) demonstrated that the major principal component characterized common effects whereas the minor principal component distinguished the difference. PCA and a factor analysis suggested a substantial change in redox status as a result of AMPK activation. We also found a decrease in reduced glutathione levels in both AICAR-stimulated and contracting muscles. The muscle contraction-evoked influences related to the metabolism of amino acids, in particular, aspartate, alanine, or lysine, are supposed to be independent of AMPK activation. Our results substantiate the significance of AMPK activation in contracting skeletal muscles and provide novel evidence that AICAR stimulation closely mimics the metabolomic changes in the contracting skeletal muscles.
-Lipophilic-hydrophilic balance is a quite important determinant of pharmacokinetic properties of pharmaceuticals. Thus it is a key step to successfully manage lipophilic-hydrophilic balance in drug design. We have designed unique modular molecules, symmetrically branched oligoglycerols (BGL) as an alternative means to endow hydrophobic molecules with much hydrophilicity. We have succeeded in improving the water-solubility of several hydrophobic medicinal small molecules and thermal stability of artificial protein by covalent conjugation to BGL. We have also demonstrated that a representative BGL, symmetrically branched glycerol trimer (BGL003) does not exhibit significant cytotoxicity against human hepatocarcinoma HepG2 cells. However, there have been no reports suggesting whether BGL could be used in safety in vivo. Therefore, evaluation of acute oral toxicity of BGL003 in healthy mice was conducted. Here we demonstrate that an oral administration of BGL003 did not exhibit acute lethal toxicity up to 3,000 mg/kg. Body weight, food intake, blood glucose levels and weights of tissues were not affected by a short-term repetitive administration of increasing doses of BGL003. Biochemical indications related to hepatic disorders and tissue damage were unchanged, either. A single administration study revealed that 50% lethal dose of BGL003 should be more than 2,000 mg/kg. BGL003 will be safe and suitable approach to improve hydrophilicity of hydrophobic compounds.
Management of a lipophilic-hydrophilic balance is a key element in drug design to achieve desirable pharmacokinetic characters. Therefore we have created unique modular molecules, symmetrically branched oligoglycerols (BGL), as an alternative way to endow hydrophobic molecules with sufficient hydrophilicity. We have successfully demonstrated amelioration of the water solubility and thermal stability of several hydrophobic agents by covalent conjugation to BGL so far. However, it has not been clarified whether the molecular modification by BGL also improves the pharmacological and/or pharmacokinetic properties indeed. Recently, we synthesized a novel BGL-prodrug derivative of fenofibrate, which is an antihyperlipidemic agent and one of the most hydrophobic medicinal compounds currently used clinically, by conjugating fenofibric acid to symmetrically branched glycerol trimer (BGL003), the simplest BGL. We have previously demonstrated that the hydrophilicity and water solubility of fenofibrate are improved more than 2000 times just by conjugation to the BGL003. To verify our hypothesis that the prodrug strategy with BGL should improve pharmacological efficacy and pharmacokinetic properties of extremely hydrophobic agents such as fenofibrate by the rise in hydrophilicity, we evaluated the BGL003-prodrug derivative of fenofibrate (FF-BGL) using rodent models. Here we demonstrate that the lipid-lowering effects of fenofibrate are much potentiated by chemical conjugation to BGL003 without exhibiting significant toxicity. Plasma concentration of fenofibric acid, an active metabolite of fenofibrate, after single oral administration of FF-BGL was more than 3 times higher than that of fenofibrate, in accordance. In fasting rats, plasma concentration of fenofibric acid after fenofibrate administration was curtailed into less than half of that in ad libitum-fed rats, while FF-BGL showed about the same plasma level even in the starving rats. This is the first report showing that BGL-prodrug improves pharmacological and pharmacokinetic properties as well as hydrophilicity of highly hydrophobic compounds. Furthermore, prodrug strategy using BGL suggests the possibility of diminishing the food-drug interaction effects, which should be advantageous for promoting drug compliance. BGL will be a suitable prodrug strategy to ameliorate physical, pharmacological, and pharmacokinetic characteristics of extremely hydrophobic compounds.
Recent studies have shown that orally supplied nitrates, which substantially exist in our daily diets, are reduced into nitrites and become significant sources of nitric oxide (NO) especially in hypoxic tissues. However, physiological significance of nitrites in normal tissues has not been elucidated though our serum concentrations of nitrites reach as high as micromolar levels. We investigated effects of nitrite on endothelial NO synthase (eNOS) using human glomerular endothelial cells to reveal potential glomerular-protective actions of nitrites with its underlying molecular mechanism. Here we demonstrate that nitrite stimulation evokes eNOS activation which is dependent on 5′AMP-activated protein kinase (AMPK) activation in accordance with ATP reduction. Thus, nitrites should facilitate AMPK-eNOS pathway in an energy level-dependent manner in endothelial cells. The activation of AMPK-eNOS signals is suggested to be involved in vascular and renal protective effects of nitrites and nitrates. Nitrites may harbor beneficial effects on metabolic regulations as AMPK activators.Key words nitrite; 5′AMP-activated protein kinase; endothelial nitric oxide synthase; human glomerular endothelial cell (HGEC); nitrate Nitric oxide (NO) is an important signaling molecule involved in many physiological processes. Above all, NO is a dominant vasodilator released from endothelial cells and identified as the nature of endothelium-derived relaxant factor so called, which regulates blood pressures.1) In addition, NO prevents endothelial apoptosis, platelet aggregation and has tissue-protective actions against such proinflammatory and proatherogenic stimulations.2-4) NO is produced from arginine by three distinct isoforms of nitric oxide synthase (NOS). In uninjured endothelial cells, endothelial NOS (eNOS) dominantly catabolizes the NO production. Therefore, appropriate regulation of eNOS activity is quite important to keep vessels and tissues in good conditions. Disruption of endothelial NO synthesis has been reported in such diseases as hypertension, diabetes and hyperlipidemia in accordance. 5-8)The half-life of NO in blood is just in seconds and metabolized into inert nitrate via nitrite. In addition, our daily diets, especially vegetables, ordinarily contain considerable amounts of nitrate and nitrite, and significant concentrations of them distributes throughout our bodies. An analysis using capillary electrophoresis revealed the concentrations of nitrite and nitrate in normal human serum are around 6.6 and 34 µM, respectively. 9)Exogenous NO sources constitute a powerful way to supplement NO when the body cannot generate it enough for normal biological functions. Recent studies have established the notion of nitrate-nitrite-NO pathway (reviewed in 10,11) ). In brief, dietary and salivary glands-secreted nitrate is reduced into nitrite by bacteria in oral cavity. The nitrite is converted into nitrogen oxides including NO in the stomach or other acidic environments. The resultant nitrate in the plasma is taken up and re-secr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.