Answering reachability queries on directed graphs is ubiquitous in many applications involved with graph-shaped data as one of the most fundamental and important operations. However, it is still highly challenging to efficiently process them on large-scale graphs. Transitive-closure-based methods consume prohibitively large index space, and onlinesearch-based methods answer queries too slowly. Labelingbased methods attain both small index size and query time, but previous indexing algorithms are not scalable at all for processing large graphs of the day. In this paper, we propose new labeling-based methods for reachability queries, referred to as pruned landmark labeling and pruned path labeling. They follow the frameworks of 2-hop cover and 3-hop cover, but their indexing algorithms are based on the recent notion of pruned labeling and improve the indexing time by several orders of magnitude, resulting in applicability to large graphs with tens of millions of vertices and edges. Our experimental results show that they attain remarkable trade-offs between fast query time, small index size and scalability, which previous methods have never been able to achieve. Furthermore, we also discuss the ingredients of the efficiency of our methods by a novel theoretical analysis based on the graph minor theory.
Abstract. Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of realworld temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena.
Abstract-The construction of cut trees (also known as GomoryHu trees) for a given graph enables the minimum-cut size of the original graph to be obtained for any pair of vertices. Cut trees are a powerful back-end for graph management and mining, as they support various procedures related to the minimum cut, maximum flow, and connectivity. However, the crucial drawback with cut trees is the computational cost of their construction. In theory, a cut tree is built by applying a maximum flow algorithm for n times, where n is the number of vertices. Therefore, naive implementations of this approach result in cubic time complexity, which is obviously too slow for today's large-scale graphs. To address this issue, in the present study, we propose a new cut-tree construction algorithm tailored to real-world networks. Using a series of experiments, we demonstrate that the proposed algorithm is several orders of magnitude faster than previous algorithms and it can construct cut trees for billion-scale graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.