The Kuroshio is one of the most energetic western boundary currents accompanied by vigorous eddy activity both on mesoscale and submesoscale, which affects biogeochemical processes in the upper ocean. We examine the primary production around the Kuroshio off Japan using a climatological ocean modeling based on the Regional Oceanic Modeling System (ROMS) coupled with a nitrogen‐based nutrient, phytoplankton and zooplankton, and detritus (NPZD) biogeochemical model in a submesoscale eddy‐permitting configuration. The model indicates significant differences of the biogeochemical responses to eddy activities in the Kuroshio Region (KR) and Kuroshio Extension Region (KE). In the KR, persisting cyclonic eddies developed between the Kuroshio and coastline are responsible for upwelling‐induced eutrophication. However, the eddy‐induced vertical nutrient flux counteracts and promotes pronounced southward and downward diapycnal nutrient transport from the mixed‐layer down beneath the main body of the Kuroshio, which suppresses the near‐surface productivity. In contrast, the KE has a 23.5% higher productivity than the KR, even at comparable eddy intensity. Upward nutrient transport prevails near the surface due to predominant cyclonic eddies, particularly to the north of the KE, where the downward transport barely occurs, except at depths deeper than 400 m and to a much smaller degree than in the KR. The eddy energy conversion analysis reveals that the combination of shear instability around the mainstream of the Kuroshio with prominent baroclinic instability near the Kuroshio front is essential for the generation of eddies in the KR, leading to the increase of the eddy‐induced vertical nitrate transport around the Kuroshio.
This study investigates the dynamics of tidally induced internal waves over a shallow ridge, the Izu‐Ogasawara Ridge off the Japanese mainland, using a downscaled high‐resolution regional ocean numerical model. Both the Kuroshio and tides contribute to the field of currents in the study area. The model results show strong internal tidal energy fluxes over the ridge, exceeding 3.5 kW m−1, which are higher than the fluxes along the Japanese mainland. The flux in the upstream side of the Kuroshio is enhanced by an interaction of internal waves and currents. The tidal forcing induces 92% of the total internal wave energy flux, exhibiting the considerable dominance of tides in internal waves. The tidal forcing enhances the kinetic energy, particularly in the northern area of the ridge where the Kuroshio Current is not a direct influence. The tidal forcing contributes to roughly 30% of the total kinetic energy in the study area.
We assessed spatial and seasonal variabilities of eddy-driven vertical nutrient fluxes, which are essential for maintaining primary production in the upper ocean. A climatological model based on a Regional Oceanic Modeling System (Regional Oceanic Modeling System) coupled with a Nutrient Phytoplankton Zooplankton and Detritus (NPZD) biogeochemical model at a submesoscale eddy-permitting resolution was used to investigate the mechanisms driving such variabilities around the Kuroshio, off the coast of Japan. The model realistically reproduced the spatial segmentations in primary production on both sides of the Kuroshio path with a higher chlorophyll-a concentration on the northern side than the southern side. In winter, downward eddy-induced nitrate flux is predominantly provoked in the upstream Kuroshio region (KR), while upward nitrate fluxes prevail in the downstream Kuroshio Extension (KE) region, due to both shear and baroclinic instabilities. Baroclinic instability plays a crucial role in inducing seasonal variability, leading to enhancement (reduction) of the eddy flux in winter (summer), particularly in regions away from the Kuroshio axis. Furthermore, we found that the influence of the Izu-Ogasawara Ridge, located in the KR, on regional dynamics and resultant spatial variability of the biogeochemical response are mostly confined in the KR. The Kuroshio is less turbulent in the upstream of the ridge, while it becomes unstable to shed mesoscale eddies in laterally wider and vertically deeper regions downstream. Consequently, although the near-surface nitrate concentration is lower downstream, the upward eddy-driven nitrate flux is more effective in maintaining active primary production due to the shear and baroclinic instabilities in winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.