Azaspirocyclic compounds have gained attention in chemistry and drug discovery fields. In this manuscript, the development of a Pd-catalyzed dearomative azaspirocyclization of bromoarenes bearing an aminoalkyl group with N-tosylhydrazones is described. The present method enables azaspirocyclization with the introduction of carbon substituents, achieving the convergent synthesis of 1-azaspirocycles. This method allowed furan, thiophene, and naphthalene cores to generate the corresponding 1-azaspirocycles. The obtained azaspirocycles from furans were further elaborated via an acid-catalyzed rearrangement to afford 1-azaspirocyclopentenones.
File list (2)download file view on ChemRxiv 2021YanagimotoUwabe.pdf (1.33 MiB) download file view on ChemRxiv 2021YanagimotoUwabe_SI.pdf (50.13 MiB)
1-Azaspirocyclic compounds have gained attention in chemistry and drug discovery fields. In this manuscript, the development of a Pd-catalyzed dearomative azaspirocyclization of bromoarenes bearing an aminoalkyl group with <i>N</i>-tosylhydrazones is described. The present method enables azaspirocyclization with the introduction of carbon substituents, achieving the convergent synthesis of 1-azaspirocycles. This method allowed furan, thiophene, and naphthalene cores to generate the corresponding 1-azaspirocycles. The obtained azaspirocycles from furans were further elaborated <i>via</i> an acid-catalyzed rearrangement to afford 1-azaspirocyclopentenones.
1-Azaspirocyclic compounds have gained attention in chemistry and drug discovery fields. In this manuscript, the development of a Pd-catalyzed dearomative azaspirocyclization of bromoarenes bearing an aminoalkyl group with <i>N</i>-tosylhydrazones is described. The present method enables azaspirocyclization with the introduction of carbon substituents, achieving the convergent synthesis of 1-azaspirocycles. This method allowed furan, thiophene, and naphthalene cores to generate the corresponding 1-azaspirocycles. The obtained azaspirocycles from furans were further elaborated <i>via</i> an acid-catalyzed rearrangement to afford 1-azaspirocyclopentenones.
Total syntheses of C11-oxygenated Cephalotaxus alkaloids, fortuneicyclidins A and B, and cephalotine B, were achieved. The key for the synthesis is a Pd-catalyzed dearomative spirocyclization of bromofurans with N-tosylhydrazones, followed by acid-mediated tandem transformation to construct the tetracyclic skeleton with the C11-oxygen functional group. Chemo-selective and catalytic functional group conversions of the tetracyclic intermediate completed the synthesis of fortuneicyclidins and cephalotine B in 8 and 9 steps, respectively.
Total syntheses of C11-oxygenated Cephalotaxus alkaloids, fortuneicyclidins A and B, and cephalotine B, were achieved. The key for the synthesis is a Pd-catalyzed dearomative spirocyclization of bromofurans with N-tosylhydrazones, followed by acid-mediated tandem transformation to construct the tetracyclic skeleton with the C11-oxygen functional group. Chemo-selective and catalytic functional group conversions of the tetracyclic intermediate completed the synthesis of fortuneicyclidins and cephalotine B in 8 and 9 steps, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.