Flies, like all animals, need to find suitable and safe food. Because the principal food source for Drosophila melanogaster is yeast growing on fermenting fruit, flies need to distinguish fruit with safe yeast from yeast covered with toxic microbes. We identify a functionally segregated olfactory circuit in flies that is activated exclusively by geosmin. This microbial odorant constitutes an ecologically relevant stimulus that alerts flies to the presence of harmful microbes. Geosmin activates only a single class of sensory neurons expressing the olfactory receptor Or56a. These neurons target the DA2 glomerulus and connect to projection neurons that respond exclusively to geosmin. Activation of DA2 is sufficient and necessary for aversion, overrides input from other olfactory pathways, and inhibits positive chemotaxis, oviposition, and feeding. The geosmin detection system is a conserved feature in the genus Drosophila that provides flies with a sensitive, specific means of identifying unsuitable feeding and breeding sites.
Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.
The antennal lobe (AL) of the male silkworm moth Bombyx mori contains 60 +/- 2 ventrally located antennal glomeruli and a dorsal macroglomerular complex (MGC) consisting of three subdivisions. The response patterns of MGC projection neurons (PNs) to pheromonal stimuli correlate with their dendritic arborization in the subdivisions of the MGC. However, the representation of this pheromonal information in the lateral protocerebrum (LPC), which is the target site of the AL PNs, is not well known. We performed nitric oxide (NO)-induced anti-cGMP immunohistochemistry and found that the PNs which respond to the major pheromone component (bombykol) express strong immunoreactivity. They project to a specific area, the delta area in the inferior lateral protocerebrum (DeltaILPC), which clearly represents the processing center for the major pheromone component. Furthermore, to examine the projection sites in the LPC from each subdivision of the MGC, we performed double-labeling of each type of MGC-PNs, combined with NO-induced anti-cGMP immunohistochemistry. We revealed that projections from each subdivision of the MGC overlapped or separated in specific regions of the DeltaILPC. These results suggest that integration and segregation of pheromone information may occur in the DeltaILPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.