Atomic layer etching (ALE) has advantages such as precise thickness control, high etch selectivity, and no‐increase in surface roughness which can be applied to sub 10 nm semiconductor device fabrication. In this study, anisotropic ALE of tungsten (W), which is used as an interconnect layer and gate material of semiconductor devices, was investigated by sequentially exposing to F radicals by NF3 plasma to form a WFy layer and following exposure to an oxygen ion beam to remove the WFy layer by forming volatile WOxFy at room temperature. A wide ALE window of F radical adsorption time of ( ≥ 10 s/cycle) and Ox+ ion desorption time of (10 ≤ t ≤ 50 s/cycle at + 44–51 eV of Ox+ ion energy) could be identified, and at the ALE conditions, a precise etch rate of ~2.6 Å/cycle was obtained while increasing the W etch depth linearly with increasing the number of etch cycles. At the optimized W ALE conditions, the W surface roughness after the W ALE was similar to the as‐received W and the etch selectivity over SiO2 was close to infinite. However, after the W ALE, ~ 10% F diffused into W was observed on the etched W surface, and which could be removed by a following process.
Selective isotropic cyclic dry etching of silicon oxide (SiO2) was investigated using a three‐step cyclic process composed of hydrogen fluoride (HF) adsorption by NF3/H2 remote plasma and reaction with NH3 gas flow to form ammonium fluorosilicate ((NH4)2SiF6), and desorption by heating. The variation of the ratio of NF3:H2 (2:1 to 1:3) and adsorption time (10–180 s) showed the highest etch selectivity of SiO2 over Si3N4 at 1:2 ratio of NF3:H2 and with the adsorption time of 20 s. The etch selectivity higher than 40 was observed with 20 s of adsorption time with a 1:2 ratio of NF3:H2 remote plasma and the total etch depth was linearly increased with the increase of cycles with the SiO2 EPC of ~7.5 nm/cycle.
Etch characteristics of ovonic threshold switch (OTS) materials composed of Ge–As–Te for a phase-change random access memory (PCRAM) has been investigated using reactive ion etching by hydrogen-based gases such as H2, CH4, NH3, CH4 + H2, and CH4 + NH3.
Magnetic tunneling junction (MTJ) materials such as CoFeB, Co, Pt, MgO, and the hard mask material such as W and TiN were etched with a reactive ion beam etching (RIBE) system using H2/NH3. By using gas mixtures of H2 and NH3, especially with the H2/NH3( 2:1) ratio, higher etch rates of MTJ related materials and higher etch selectivities over mask materials (>30) could be observed compared to those etching using pure H2( no etching) and NH3. In addition, no significant chemical and physical damages were observed on etched magnetic materials surfaces and, for CoPt and MTJ nanoscale patterns etched by the H2/NH3( 2:1) ion beam, highly anisotropic etch profiles >83° with no sidewall redeposition could be observed. The higher etch rates of magnetic materials such as CoFeB by the H2/NH3( 2:1) ion beam compared to those by H2 ion beam or NH3 ion beam are believed to be related to the formation of volatile metal hydrides (MH, M = Co, Fe, etc) through the reduction of M-NHx( x = 1 ∼ 3) formed in the CoFeB surface by the exposure to NH3 ion beam. It is believed that the H2/NH3 RIBE is a suitable technique in the etching of MTJ materials for the next generation nanoscale spin transfer torque magnetic random access memory (STT-MRAM) devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.