: Steroid hormones are associated in depth to cellular signaling, inflammatory immune responses, and reproductive functions, and their metabolism alterations incur various diseases. In particular, quantitative profiling of steroids in plasma of patients with gastric cancer can provide a vast information to understand development of gastric cancer, since both sex hormones and glucocorticoids might be correlated with the pathological mechanisms of gastric cancer. Here, we developed a gas chromatography-tandem mass spectrometry-dynamic multiple reaction monitoring (GC-MS/MS-dMRM) method combined with solid-phase extraction (SPE) and microwave-assisted derivatization (MAD) to determine 20 endogenous steroids in human plasma. In this study, MAD conditions were optimized with respect to irradiation power and time. The SPE enabled effective cleanup and extraction for profiling of steroid hormones in human plasma samples. The MAD could improve laborious and time-consuming derivatization procedure, since dielectric heating using microwave directly increase molecular energy of reactants by penetrating through medium. Furthermore, dMRM method provided more sensitive determination of 20 steroids, compared to traditional MRM detection. The limits of quantification of steroids were below 1.125 ng/mL and determination coefficients of calibration curves were higher than 0.9925. Overall precision and accuracy results were below 19.93% and within ±17.04%, respectively. The developed method provided sufficient detection sensitivities and reliable quantification results. The established method was successfully applied to profile steroid metabolism pathways in plasma of patients with chronic superficial gastritis (CSG), intestinal metaplasia (IM), and gastric cancer. Statistical significances of steroid plasma levels between gastric disorder groups were investigated. In conclusion, this method provided comprehensive profiling of 20 steroids in human plasma samples and will be helpful to discover potential biomarkers for the development of gastric cancer and to further understand metabolic syndrome.
An efficient matrix cleanup method was developed for the rapid screening of 92 illegal adulterants (25 erectile dysfunction drugs, 15 steroids, seven anabolic steroids, 12 antihistamines, 12 nonsteroidal anti-inflammatory drugs (NSAIDs), four diuretics, and 17 weight-loss drugs) in soft-gel-type supplements by ultra-high performance liquid chromatography-quadrupole/time of flight-mass spectrometry (UHPLC-Q/TOF-MS). As representative green chemistry methods, three sample preparation methods (dispersive liquid-liquid microextraction (DLLME), “quick, easy, cheap, effective, rugged, and safe” dispersive solid-phase extraction (QuEChERS-dSPE), and enhanced matrix removal-lipid (EMR-Lipid) dSPE) were evaluated for matrix removal efficiency, recovery rate, and matrix effect. In this study, EMR-Lipid dSPE was shown to effectively remove complicated matrix contents in soft-gels, compared to DLLME and QuEChERS-dSPE. For the rapid screening of a wide range of adulterants, extracted common ion chromatogram (ECIC) and neutral loss scan (NLS) based on specific common MS/MS fragments were applied to randomly collected soft-gel-type dietary supplement samples using UHPLC-Q/TOF-MS. Both ECICs and NLSs enabled rapid and simple screening of multi-class adulterants and could be an alternative to the multiple reaction monitoring (MRM) method. The developed method was validated in terms of limit of detection (LOD), precision, accuracy, recovery, and matrix effects. The range of LODs was 0.1–16 ng/g. The overall precision values were within 0.09–14.65%. The accuracy ranged from 81.6% to 116.6%. The recoveries and matrix effects of 92 illegal adulterants ranged within 16.9–119.4% and 69.8–114.8%, respectively. The established method was successfully applied to screen and identify 92 illegal adulterants in soft-gels. This method can be a promising tool for the high-throughput screening of various adulterants in dietary supplements and could be used as a more environmentally friendly routine analytical method for screening dietary supplements illegally adulterated with multi-class drug substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.