Arabidopsis plants possess a family of nine AtAtg8 gene homologues of the yeast autophagy-associated Apg8/Aut7 gene. To gain insight into how these genes function in plants, first, the expression patterns of five AtAtg8 homologues were analysed in young Arabidopsis plants grown under favourable growth conditions or following exposure to prolonged darkness or sugar starvation. Promoters, plus the entire coding regions (exons and introns) of the AtAtg8 genes, were fused to the beta-glucuronidase reporter gene and transformed into Arabidopsis plants. In all plants, grown under favourable growth conditions, beta-glucuronidase staining was much more significant in roots than in shoots. Different genes showed distinct spatial and temporal expression patterns in roots. In some transgenic plants, beta-glucuronidase staining in leaves was induced by prolonged darkness or sugar starvation. Next, Arabidopsis plants were transformed with chimeric gene-encoding Atg8f protein fused to N-terminal green fluorescent protein and C-terminal haemagglutinin epitope tags. Analysis of these plants showed that, under favourable growth conditions, the Atg8f protein is efficiently processed and is localized to autophagosome-resembling structures, both in the cytosol and in the central vacuole, in a similar manner to its processing and localization under starvation stresses. Moreover, treatment with a cocktail of proteasome inhibitors did not prevent the turnover of this protein, implying that its turnover takes place in the vacuoles, as occurs in yeasts. The results suggest that, in plants, the cellular processes involving the Atg8 genes function efficiently in young, non-senescing tissues, both under favourable growth conditions and under starvation stresses.
Alzheimer's disease (AD) patients often exhibit perturbed circadian rhythm with fragmented sleep before disease onset. This study was designed to evaluate the effect of a 40-Hz light flicker on circadian rhythm in an AD mouse model (APP/PS1). Locomotor rhythms recordings were conducted to examine the circadian clock rhythm in APP/PS1 mice. Molecular biology analyses, including western blot and real-time qPCR assays, were conducted to assess the changes in circadian locomotor output cycles kaput (CLOCK), brain and muscle arnt-like protein-1 (BMAL1), and period 2 (PER2). In addition to determining the direct effect of a 40-Hz light flicker on hypothalamic central clock, whole-cell voltage-clamp electrophysiology was employed to record individual neurons of suprachiasmatic nucleus (SCN) sections. The results reported herein demonstrate that a 40-Hz light flicker relieves circadian rhythm disorders in APP/PS1 mice and returns the expression levels of key players in the central circadian clock, including Clock, Bmal1, and Per2, to baseline. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in SCN neurons is significantly lower in APP/PS1 mice than in the control, and the amplitude of sIPSCs is decreased. Exposure to a 40-Hz light flicker significantly increases the sIPSC frequency in SCN neurons of APP/PS1 mice, with little effect on the amplitude. However, the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) are both unaffected by a 40-Hz light flicker. The data suggest that a 40-Hz light flicker can ameliorate AD-associated circadian rhythm disorders, presenting a new type of therapeutic treatment for rhythm disorders caused by AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.