Multi-view or light field images have recently gained much attraction from academic and commercial fields to create breakthroughs that go beyond simple video-watching experiences. Immersive virtual reality is an important example. High image quality is essential in systems with a near-eye display device. The compression efficiency is also critical because a large amount of multi-view data needs to be stored and transferred. However, noise can be easily generated during image capturing, and these noisy images severely deteriorate both the quality of experience and the compression efficiency. Therefore, denoising is a prerequisite to produce multi-view-based image contents. In this paper, the structural characteristics of linear multi-view images are fully utilized to increase the denoising speed and performance as well as to improve the compression efficiency. Assuming the sequential processes of denoising and compression, multi-view geometry-based denoising is performed keeping the temporal correlation among views. Experimental results show the proposed scheme significantly improves the compression efficiency of denoised views up to 76.05%, maintaining good denoising quality compared to the popular conventional denoise algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.