With the great leap in the development of three-dimensional computer-assisted surgical technology, surgeons can use a variety of assistive methods to achieve better results and evaluate surgical outcomes in detail. This retrospective study aimed to evaluate the postoperative stability after bilateral sagittal split ramus osteotomy by volume rendering methods and to evaluate how postoperative stability differs depending on the type of surgical plate. Of the patients who underwent BSSRO, ten patients in each group (non-customized miniplate and customized miniplate) who met the inclusion criteria were selected. Preoperative and postoperative cone-beam computed tomography data were collected, and condylar morphological and landmark measurements were obtained using Checkpoint and OnDemand software, respectively. The postoperative condylar morphological dataset revealed no significant difference (p > 0.05) between the two groups. No significant difference (p > 0.05) was observed between the two groups in horizontal, vertical, or angular landmark measurements used to quantify operational stability. These results indicate that there is no difference in the surgical outcome between the patient-specific system and the conventional method, which will allow clinicians to take advantage of the patient-specific system for this surgical procedure, with favorable results, as with the conventional method.
Aim. To investigate the effect of changes in incisor tip, apex movement, and inclination on skeletal points A and B and characterize changes in skeletal points A and B to the soft tissue points A and B after incisor retraction in Angle Class I bimaxillary dentoalveolar protrusion. Methods. Twenty-two patients with Angle Class I bimaxillary dentoalveolar protrusion treated with four first premolar extractions were included in this study. The displacement of skeletal and soft tissue points A and B was measured using cone-beam computed tomography (CBCT) using a three-dimensional coordinate system. The movement of the upper and lower incisors was also measured using CBCT-synthesized lateral cephalograms. Results. Changes in the incisal tip, apex, and inclination after retraction did not significantly affect the position of points A and B in any direction (x, y, z). Linear regression analysis showed a statistically significant relationship between skeletal point A and soft tissue point A on the anteroposterior axis (z). Skeletal point A moved forward by 0.07 mm, and soft tissue point A moved forward by 0.38 mm, establishing a ratio of 0.18: 1 (r = 0.554, p < 0.01). Conclusion. The positional complexion of the skeletal points A and B was not directly influenced by changes in the incisor tip, apex, and inclination. Although the results suggest that soft tissue point A follows the anteroposterior position of skeletal point A, its clinical significance is suspected. Thus, hard and soft tissue analysis should be considered in treatment planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.