Learning-from-crowds aims to design proper aggregation strategies to infer the unknown true labels from the noisy labels provided by ordinary web workers. This paper presents max-margin majority voting (M3V) to improve the discriminative ability of majority voting and further presents a Bayesian generalization to incorporate the flexibility of generative methods on modeling noisy observations with worker confusion matrices for different application settings. We first introduce the crowdsourcing margin of majority voting, then we formulate the joint learning as a regularized Bayesian inference (RegBayes) problem, where the posterior regularization is derived by maximizing the margin between the aggregated score of a potential true label and that of any alternative label. Our Bayesian model naturally covers the Dawid-Skene estimator and M3V as its two special cases. Due to the flexibility of our model, we extend it to handle crowdsourced labels with an ordinal structure with the main ideas about the crowdsourcing margin unchanged. Moreover, we consider an online learning-from-crowds setting where labels coming in a stream. Empirical results demonstrate that our methods are competitive, often achieving better results than state-of-the-art estimators.
Recent works demonstrate that deep reinforcement learning (DRL) models are vulnerable to adversarial attacks which can decrease the victim's total reward by manipulating the observations. Compared with adversarial attacks in supervised learning, it is much more challenging to deceive a DRL model since the adversary has to infer the environmental dynamics. To address this issue, we reformulate the problem of adversarial attacks in function space and separate the previous gradient based attacks into several subspace. Following the analysis of the function space, we design a generic two-stage framework in the subspace where the adversary lures the agent to a target trajectory or a deceptive policy. In the first stage, we train a deceptive policy by hacking the environment, and discover a set of trajectories routing to the lowest reward. The adversary then misleads the victim to imitate the deceptive policy by perturbing the observations. Our method provides a tighter theoretical upper bound for the attacked agent's performance than the existing approaches. Extensive experiments demonstrate the superiority of our method and we achieve the state-of-the-art performance on both Atari and MuJoCo environments.Preprint. Under review.
Binary neural networks have great resource and computing efficiency, while suffer from long training procedure and non-negligible accuracy drops, when comparing to the fullprecision counterparts. In this paper, we propose the composite binary decomposition networks (CBDNet), which first compose real-valued tensor of each layer with a limited number of binary tensors, and then decompose some conditioned binary tensors into two low-rank binary tensors, so that the number of parameters and operations are greatly reduced comparing to the original ones. Experiments demonstrate the effectiveness of the proposed method, as CBDNet can approximate image classification network ResNet-18 using 5.25 bits, VGG-16 using 5.47 bits, DenseNet-121 using 5.72 bits, object detection networks SSD300 using 4.38 bits, and semantic segmentation networks SegNet using 5.18 bits, all with minor accuracy drops. 1
Embodied agents in vision navigation coupled with deep neural networks have attracted increasing attention. However, deep neural networks are vulnerable to malicious adversarial noises, which may potentially cause catastrophic failures in Embodied Vision Navigation. Among these adversarial noises, universal adversarial perturbations (UAP), i.e., the image-agnostic perturbation applied on each frame received by the agent, are more critical for Embodied Vision Navigation since they are computation-efficient and application-practical during the attack. However, existing UAP methods do not consider the system dynamics of Embodied Vision Navigation. For extending UAP in the sequential decision setting, we formulate the disturbed environment under the universal noise δ, as a δ-disturbed Markov Decision Process (δ-MDP). Based on the formulation, we analyze the properties of δ-MDP and propose two novel Consistent Attack methods for attacking Embodied agents, which first consider the dynamic of the MDP by estimating the disturbed Q function and the disturbed distribution. In spite of victim models, our Consistent Attack can cause a significant drop in the performance for the Goalpoint task in habitat. Extensive experimental results indicate that there exist potential risks for applying Embodied Vision Navigation methods to the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.