Air-writing recognition has received wide attention due to its potential application in intelligent systems. To date, some of the fundamental problems in isolated writing have not been addressed effectively. This paper presents a simple yet effective air-writing recognition approach based on deep convolutional neural networks (CNNs). A robust and efficient hand tracking algorithm is proposed to extract air-writing trajectories collected by a single web camera. The algorithm addresses the push-to-write problem and avoids restrictions on the users' writing without using a delimiter and an imaginary box. A novel preprocessing scheme is also presented to convert the writing trajectory into appropriate forms of data, making the CNNs trained with these forms of data simpler and more effective. Experimental results indicate that the proposed approach not only obtains much higher recognition accuracy but also reduces the network complexity significantly compared to the popular image-based methods.INDEX TERMS Air writing recognition, isolated writing, convolutional neural network (CNN), hand tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.