Background: Microcephaly is common in patients with neuropsychiatric problems, and it is usually closely related to genetic causes. However, studies on chromosomal abnormalities and single-gene disorders associated with fetal microcephaly are limited.Objective: We investigated the cytogenetic and monogenic risks of fetal microcephaly and evaluated their pregnancy outcomes.Methods: We performed a clinical evaluation, high-resolution chromosomal microarray analysis (CMA), and trio exome sequencing (ES) on 224 fetuses with prenatal microcephaly and closely followed the pregnancy outcome and prognosis.Results: Among 224 cases of prenatal fetal microcephaly, the diagnosis rate was 3.74% (7/187) for CMA and 19.14% (31/162) for trio-ES. Exome sequencing identified 31 pathogenic or likely pathogenic (P/LP) single nucleotide variants (SNVs) in 25 genes associated with fetal structural abnormalities in 37 microcephaly fetuses; 19 (61.29%) of which occurred de novo. Variants of unknown significance (VUS) was found in 33/162 (20.3%) fetuses. The gene variant involved included the single gene MPCH 2 and MPCH 11, which is associated with human microcephaly, and HDAC8, TUBGCP6, NIPBL, FANCI, PDHA1, UBE3A, CASK, TUBB2A, PEX1, PPFIBP1, KNL1, SLC26A4, SKIV2L, COL1A2, EBP, ANKRD11, MYO18B, OSGEP, ZEB2, TRIO, CLCN5, CASK, and LAGE3. The live birth rate of fetal microcephaly in the syndromic microcephaly group was significantly higher than that in the primary microcephaly group [62.9% (117/186) vs 31.56% (12/38), p = 0.000].Conclusion: We conducted a prenatal study by conducting CMA and ES for the genetic analysis of fetal microcephaly cases. CMA and ES had a high diagnostic rate for the genetic causes of fetal microcephaly cases. In this study, we also identified 14 novel variants, which expanded the disease spectrum of microcephaly-related genes.
Objective: SHOX haploinsufficiency have been commonly found in isolated short stature (ISS) and Léri–Weill dyschondrosteosis (LWD) patients. However, few publications have described the genetic analysis and clinical characteristics of fetuses with SHOX haploinsufficiency. Methods: Chromosomal microarray (CMA) were applied in 14,051 fetuses and sequentially whole exome sequence (WES) in 1340 fetuses who underwent prenatal diagnosis during 2016–2021. The analysis and summary of molecular genetics, sonographic characteristics, and follow-up results were performed in fetuses with SHOX haploinsufficiency without other genetic etiologies. A comparison was made between three groups according to prenatal diagnostic indications. Results: 8 (0.06%) fetuses of SHOX haploinsufficiency were all detected by CMA, of which 5 (62.5%) were detected with short long bones by ultrasound scan, and 4 were inherited from their previously undiagnosed parents. No pathogenic SHOX variants were found by WES. The detection rate of SHOX haploinsufficiency was obviously higher in the short long bone group (2.6%, 5/191) than the other abnormality group (0.03%, 1/3919) or no ultrasound abnormality group (0.02%, 2/9941). Three of the fetuses were liveborn with normal growth up to the age of four and four were terminated. Conclusion: The phenotype of fetuses with SHOX haploinsufficiency is highly varied. Over 1/3 of the cases exhibited no phenotype and nearly 2/3 with short long bones, in the absence of Madelung deformity during fetal development. SHOX haploinsufficiency should be considered in all antenatal presentations, especially in the case of isolated short long bones. CMA can provide effective detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.