LHPP, a histidine phosphatase, has been implicated in tumour progression. However, its role, underlying mechanisms, and prognostic significance in human gastric cancer (GC) are elusive. Here, we obtained GC tissues and corresponding normal tissues from 48 patients and identified LHPP as a downregulated gene via RNA-seq. qRT-PCR and western blotting were applied to examine LHPP levels in normal and GC tissues. The prognostic value of LHPP was elucidated using tissue microarray and IHC analyses in two independent GC cohorts. The functional roles and mechanistic insights of LHPP in GC growth and metastasis were evaluated in vitro and in vivo. The results showed that LHPP expression was significantly decreased in GC tissues at both the mRNA and protein levels. Multivariate Cox regression analysis revealed that LHPP was an independent prognostic factor and effective predictor in patients with GC. The low expression of LHPP was significantly related to the poor prognosis and chemotherapy sensitivity of gastric cancer patients. Moreover, elevated LHPP expression effectively suppressed GC growth and metastasis in vitro and in vivo. Mechanistically, the m6A modification of LHPP mRNA by METTL14 represses its expression; LHPP inhibits the phosphorylation of GSK3b through acetylation and mediates HIF1A to inhibit glycolysis, proliferation, invasion and metastasis of gastric cancer cells. Together, our findings suggest that LHPP is regulated by m6A methylation and regulates the metabolism of GC by changing the acetylation level. Thus, LHPP is a potential predictive biomarker and therapeutic target for GC.
We have demonstrated that CDK5RAP3 exerts a tumour suppressor effect in gastric cancer, but its role in regulating tumour-associated macrophages (TAMs) has not yet been reported. Here, we show that CDK5RAP3 is related to the infiltration and polarization of macrophages. It inhibits the polarization of TAMs to M2 macrophages and promotes the polarization of the M1 phenotype. CDK5RAP3 reduces the recruitment of circulating monocytes to infiltrate tumour tissue by inhibiting the CCL2/CCR2 axis in gastric cancer. Blocking CCR2 reduces the growth of xenograft tumours and the infiltration of monocytes. CDK5RAP3 inhibits the nuclear transcription of NF-κB, thereby reducing the secretion of the cytokines IL4 and IL10 and blocking the polarization of M2 macrophages. In addition, the absence of CDK5RAP3 in gastric cancer cells allows macrophages to secrete more MMP2 to promote the epithelial-mesenchymal transition (EMT) process of gastric cancer cells, thereby enhancing the invasion and migration ability. Our results imply that CDK5RAP3 may be involved in the regulation of immune activity in the tumour microenvironment and is expected to become a potential immunotherapy target for gastric cancer.
BackgroundLHPP, a histidine phosphatase, has been implicated in tumor progression. However, its role, underlying mechanisms, and prognostic significance in human gastric cancer (GC) are elusive. MethodsWe obtained GC tissues and corresponding normal tissues from 8 patients and identified LHPP as a downregulated gene via RNA-seq. qRT-PCR and western blotting were applied to examine LHPP levels in normal and GC tissues. The prognostic value of LHPP was elucidated using tissue microarray and IHC analyses in two independent GC cohorts. The functional roles and mechanistic insights of LHPP in GC growth and metastasis were evaluated in vitro and in vivo. ResultsThe results showed that LHPP expression was significantly decreased in GC tissues at both the mRNA and protein level. Multivariate Cox regression analysis revealed that LHPP was an independent prognostic factor and effective predictor in patients with GC. The low expression of LHPP was significantly related to the poor prognosis and chemotherapy sensitivity of gastric cancer patients. Moreover, elevated LHPP expression effectively suppressed GC growth and metastasis in vitro and in vivo. Mechanistically, the m6A modification of LHPP mRNA by METTL14 represses its expression; LHPP inhibits the phosphorylation of GSK3b through acetylation, and mediates HIF1A to inhibit glycolysis, proliferation, invasion and metastasis of gastric cancer cells. ConclusionLHPP is regulated by m6A methylation and regulates the metabolism of GC by changing the acetylation level. Thus, LHPP is a potential predictive biomarker and therapeutic target for GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.