Pool film boiling was studied by visualized quenching experiments on stainless steel spheres in water at the atmospheric pressure. The surfaces of the spheres were coated to be superhydrophobic (SHB), having a static contact angle greater than 160 deg. Subcooled conditions were concerned parametrically with the subcooling degree being varied from 0 °C (saturated) to 70 °C. It was shown that film boiling is the overwhelming mode of heat transfer during the entire course of quenching as a result of the retention of stable vapor film surrounding the SHB spheres, even at very low wall superheat that normally corresponds to nucleate boiling. Pool boiling heat transfer is enhanced with increasing the subcooling degree, in agreement with the thinning trend of the vapor film thickness. The heat flux enhancement was found to be up to fivefold for the subcooling degree of 70 °C in comparison to the saturated case, at the wall superheat of 200 °C. A modified correlation in the ratio form was proposed to predict pool film boiling heat transfer from spheres as a function of the subcooling degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.