The size distributions of calcium sulfate dihydrate crystals formed during the industrial phosphoric acid production process are critical to the acid filtration efficiency. In this work, a thermodynamically consistent definition of supersaturation is derived and modeled using the mixed-solvent-electrolyte framework in OLI software for gypsum in an acid mixture. Continuous reactive crystallization experiments are carried out to estimate the gypsum growth and nucleation kinetics at different temperatures. A population balance model is implemented using the method of characteristics and integrated with the thermodynamic model platform to accurately simulate the dynamic propagation of the solution concentration and particle size distribution. The experimentally fitted kinetic parameters are verified through a comparison with the predicted crystal size distribution (CSD) and supersaturation. The comparison shows a good agreement between the predicted and measured CSD and supersaturation at a temperature range from 25 to 60°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.