Emerging evidence has demonstrated the altered expression of mRNAs in cancer development and progression. In this study, the precise role of miRNA-22 (miR-22) in colon cancer cells was investigated. Upon transfection with a miR-22 expression vector, the viability of HCT-116 human colon cancer cells was significantly reduced and tumor cell migration and invasion capacity were also suppressed. Computational in silico analysis predicted that T-cell lymphoma invasion and metastasis 1 (TIAM1) is a target gene of miR-22. This was confirmed by qRT-PCR and western blotting, which showed that miR-22 expression inhibited TIAM1 mRNA and protein expression, respectively. In addition, the expression of pro-invasive gene matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) and pro-angiogenic protein vascular endothelial growth factor (VEGF) were also reduced by miR-22 expression. Collectively, these data suggest that miR-22 may act as a tumor suppressor in colon cancer, most likely by targeting TIAM1 expression.
Recent evidence demonstrated an enhanced metastasis of non-small cell lung cancer (NSCLC) cells induced by lipopolysaccharide (LPS) stimulation, which reflected an important role of inflammation in tumor progression. However, the underlying mechanisms still remain unclear. Here, we evaluated the potential role of reactive oxygen species (ROS) in Toll-like receptor 4 (TLR4) signaling enhanced NSCLC metastasis. NSCLC cells were isolated from clinical surgical tissues. We found that LPS stimulation of NSCLC cells facilitates their metastasis that was accompanied by increased ROS production and could be abrogated by ROS inhibition. NADPH oxidase was essential for TLR4 signaling-enhanced NSCLC metastasis. Elevated NADPH oxidase 1 (NOX1) expression by LPS stimulation was observed. Blockade of NOX1 with ML171 alleviated enhanced NSCLC metastasis by TLR4 signaling. Enforced NOX1 expression promoted TLR4 signaling-enhanced NSCLC metastasis, while decreased NOX1 expression inhibited TLR4 signaling-enhanced NSCLC metastasis. Further, NOX1 could regulate the expression of CXCR4 and matrix metallopeptidase 9 (MMP9) in NSCLC cells. NOX1 expression in tumor tissues was correlated with TLR4 expression and clinical stages in NSCLC patients. Finally, inhibition of NOX1/ROS prevented enhanced lung tumor burdens of NSCLC by LPS-induced acute lung infection. Our findings demonstrated a crucial role of NOX1-dependent ROS for TLR4 signaling to enhance the metastasis of NSCLC, which could further the understanding of NSCLC pathogenesis and helpful for developing novel therapeutics for NSCLC.
Esophageal neuroendocrine neoplasms are rare. With the improvement and popularization of diagnostic methods, the morbidity statistics have increased annually in recent years. There are currently no treatment guidelines for esophageal neuroendocrine neoplasms, and surgery is the only cure. This usually involves radical surgery when the tumor is limited to the primary site or when only regional lymph node metastasis occurs. Surgical treatment is key to treating esophageal neuroendocrine neoplasms, but combined treatment with chemotherapy and radiotherapy can significantly improve patient survival. The effect of radiotherapy alone on this disease is poor. However, targeted endocrine therapy can improve endocrine hormone symptoms. The prognosis of patients with esophageal neuroendocrine neoplasms is mainly determined by the pathological stage. With the development of molecular biology techniques, the combination of targeted drugs and traditional chemotherapy is expected to provide novel ideas and directions for the treatment of esophageal neuroendocrine neoplasms in the coming years. In this article, the status of esophageal neuroendocrine tumor treatments was reviewed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.