Based on the finite volume method, three methods for rotational region treatment were presented and validated by simulating two-dimensional accelerating rotational flows. Separate transient incompressible flows induced by crossshaped blades during starting process were simulated using the dynamic mesh, sliding mesh and dynamic reference frame methods. The computing performance and stability of the three methods were evaluated by comparing numerical results, and the transient characteristics of the accelerating rotational flow were analysed numerically. Results showed that the starting process affected the flow structure and transient characteristics of the accelerating rotational flows. The sliding mesh method showed higher computational efficiency and accuracy compared with other methods, and could easily be extended to solve three-dimensional transient flows in hydraulic machineries under transient operations, such as start-up and shutdown.
In order to solve the high-precision motion control problem of the n-degree-of-freedom (n-DOF) manipulator driven by large amount of real-time data, a motion control algorithm based on self-organizing interval type-2 fuzzy neural network error compensation (SOT2-FNNEC) is proposed. The proposed control framework can effectively suppress various types of interference such as base jitter, signal interference, time delay, etc., during the movement of the manipulator. The fuzzy neural network structure and self-organization method are used to realize the online self-organization of fuzzy rules based on control data. The stability of the closed-loop control systems are proved by Lyapunov stability theory. Simulations show that the algorithm is superior to a self-organizing fuzzy error compensation network and conventional sliding mode variable structure control methods in control performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.