Knowledge on genetic diversity and structure of camel populations is fundamental for sustainable herd management and breeding program implementation in this species. Here we characterized a total of 331 camels from Northern Africa, representative of six populations and thirteen Algerian and Egyptian geographic regions, using 20 STR markers. The nineteen polymorphic loci displayed an average of 9.79 ± 5.31 alleles, ranging from 2 (CVRL8) to 24 (CVRL1D). Average He was 0.647 ± 0.173. Eleven loci deviated significantly from Hardy-Weinberg proportions (P<0.05), due to excess of homozygous genotypes in all cases except one (CMS18). Distribution of genetic diversity along a weak geographic gradient as suggested by network analysis was not supported by either unsupervised and supervised Bayesian clustering. Traditional extensive/nomadic herding practices, together with the historical use as a long-range beast of burden and its peculiar evolutionary history, with domestication likely occurring from a bottlenecked and geographically confined wild progenitor, may explain the observed genetic patterns.
Myostatin (MSTN), a negative regulator of skeletal muscle development in mammals, represents a key target for genetic investigations in meat-producing animals, with mutations responsible for increased skeletal-muscle mass currently described in several livestock species. Dromedary camels play a major economic role as suppliers of meat for human consumption across several countries. Notwithstanding, a comprehensive characterization of the sequence variability at the Camelus dromedarius MSTN locus was still lacking. Here we present the first extensive sequence and polymorphism analysis of the MSTN gene in the C. dromedarius species. Out of more than 3.6 kb of nucleotide sequence screened on 22 animals from 3 different Northern African regions, only 3 variant sites in the first intron were detected. The low observed diversity may reflect the evolutionary history of the species, likely developed as domesticates from a low variable wild ancestor population. Sequence identity among C. dromedarius and other Cetartiodactyla highlighted a tree topology consistent with previous reports of a closer relationship between Tylopoda and Suiformes. A close similarity between C. ferus and C. dromedarius was observed within Tylopoda. A markedly higher sequence identity between C. dromedarius and the other vertebrate species was observed at the MSTN locus compared to other genes, thus confirming it as a highly conserved target across mammals.
n Algeria, the dromedary Camelus dromedarius, remains an important and valuable resource despite the decreasing number of its individuals. The situation of the livestock seems to be enhanced these last years, with the growing demand of camel’s milk and meat. The dromedary is an excellent animal for using local food resources available in arid and semi-arid climates but sadly there are only few studies about it and the scientific progress contributes very little in its breeding cycles. The dromedary populations are so phenotypically Algerian so different that supposes a lot of differentiations on the genomic scale which could be a beneficial advantage in the context of the adaptation to the new environmental conditions.The dromedary has long suffered from the sedentarily of the breeders as well as the bad health conditions. Lately the government has launched economical programs that intend to promote the local animal resources so the situation of the dromedary is getting better, thanks to the support of the government and the benefits behind the dromedary products. We believe that there is a lot to be done yet about the identification of the dromedary genetics. The purpose of the coming efforts are conservation and amelioration of these local resources which has a great impact for the promotion of the Algerian economy
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.