In recent years, Power Quality becomes increasingly a major concern for both electric utilities and end users. Accordingly, the electrical engineering community has to deal with the analysis, diagnosis and solution of PQ issues using system approach rather than handling these issues as individual problems. This paper describes the analysis of PQ using advanced signal processing tools represented in Hilbert & Wavelet Transforms (HT-WT) and artificial intelligence tools represented in Artificial Neural Network & Support Vector Machine (ANN-SVM) for detection and classification of power quality disturbances respectively. These techniques were successfully simulated using LABVIEW software capabilities. The results of simulation indicate that the signal processing techniques are effective mechanisms to detect and classify power quality disturbances. At the end, the combination of WT as a tool of detection and features extraction with SVM as a classifier tool resulted as the best combination for PQ monitoring system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.