The pressure dependence of the lattice and elastic constants of the orthorhombic YBa 2 Cu 3 O 7 are firstly investigated using the first principles calculations based on the density functional theory. The calculated lattice parameters at 0 GPa are in agreement with the available experimental data. By the elastic stability criteria under isotropic pressure, it is predicted that YBa 2 Cu 3 O 7 with and orthorhombic structure is mechanically stable under pressure up to 100 GPa. On the basis of the elastic constants, Pugh’s modulus ratio, Poisson’s ratio, elastic anisotropy, Debye temperature, and the minimum thermal conductivity of YBa 2 Cu 3 O 7 under pressure up to 100 GPa are further investigated. It is found that its ductility, Debye temperature, and minimum thermal conductivity increase with pressure.
Magnetic nanoribbons based on one-dimensional materials are potential candidates for spin caloritronics devices. Here, we constructed ferromagnetic graphene nanoribbons with zigzag and Klein edges (N-ZKGNRs, N = 4–21) and found that the N-ZKGNRs are in the indirect-gap bipolar magnetic semiconducting state (BMS). Moreover, when a temperature difference is applied through the nanoribbons, spin-dependent currents with opposite flow directions and opposite spin directions are generated, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). In addition, the spin-dependent Seebeck diode effect (SDSD) also appeared in these devices. More importantly, we found that the BMS with a larger bandgap is promising for generating the SDSD, while the BMS with a smaller bandgap is promising for generating the SDSE. These findings show that ZKGNRs are promising candidates for spin caloritronics devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.