Aldehyde dehydrogenase isoform 1 (ALDH1) has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large collection of epithelial tumor specimens (six cancer types, n = 792) by immunohistochemical staining. Using the ALDEFUOR assay, ALDH1 activity was also examined in 16 primary tumor specimens and 43 established epithelial cancer cell lines. In addition, an ovarian cancer transgenic mouse model and 7 murine ovarian cancer cell lines were analyzed. We found that the expression levels and patterns of ALDH1 in epithelial cancers are remarkably distinct, and they correlate with their corresponding normal tissues. ALDH1 protein expression levels are positively correlated with ALDH1 enzymatic activity measured by ALDEFLUOR assay. Long-term in vitro culture doesn't significantly affect ALDH1 activity in epithelial tumor cells. Consistent with research on other cancers, we found that high ALDH1 expression is significantly associated with poor clinical outcomes in serous ovarian cancer patients (n = 439, p = 0.0036). Finally, ALDHbr tumor cells exhibit cancer stem cell properties and are resistant to chemotherapy. As a novel cancer stem cell marker, ALDH1 can be used for tumors whose corresponding normal tissues express ALDH1 in relatively restricted or limited levels such as breast, lung, ovarian or colon cancer.
Spermatogenesis is a differentiation process during which diploid spermatogonial stem cells (SSCs) produce haploid spermatozoa. This highly specialized process is precisely controlled at the transcriptional, posttranscriptional, and translational levels. Here we report that N-methyladenosine (mA), an epitranscriptomic mark regulating gene expression, plays essential roles during spermatogenesis. We present comprehensive mA mRNA methylomes of mouse spermatogenic cells from five developmental stages: undifferentiated spermatogonia, type A spermatogonia, preleptotene spermatocytes, pachytene/diplotene spermatocytes, and round spermatids. Germ cell-specific inactivation of the mA RNA methyltransferase Mettl3 or Mettl14 with Vasa-Cre causes loss of mA and depletion of SSCs. mA depletion dysregulates translation of transcripts that are required for SSC proliferation/differentiation. Combined deletion of Mettl3 and Mettl14 in advanced germ cells with Stra8-GFPCre disrupts spermiogenesis, whereas mice with single deletion of either Mettl3 or Mettl14 in advanced germ cells show normal spermatogenesis. The spermatids from double-mutant mice exhibit impaired translation of haploid-specific genes that are essential for spermiogenesis. This study highlights crucial roles of mRNA mA modification in germline development, potentially ensuring coordinated translation at different stages of spermatogenesis.
A relatively rare aldehyde dehydrogenase 1 (ALDH1)-positive "stem cell-like" subpopulation of tumor cells has the unique ability to initiate and perpetuate tumor growth; moreover, it is highly resistant to chemotherapy and significantly associated with poor clinical outcomes. The development of more effective therapies for cancer requires targeting of this cell population. Using cDNA microarray analysis, we identified that the expression of the Caenorhabditis elegans lin-28 homologue (LIN28) was positively correlated with the percentage of ALDH1 + tumor cells; this was further validated in an independent set of tissue arrays (n = 197). Both loss-offunction and gain-of-function studies showed that LIN28 plays a critical role in the maintenance of ALDH1 + tumor cells. In addition, we found that there is a double-negative feedback loop between LIN28 and let-7 in tumor cells, and that let-7 negatively regulates ALDH1 + tumor cells. Finally, we report that a LIN28/let-7 loop modulates self-renewal and differentiation of mammary gland epithelial progenitor cells. Our data provide evidence that cancer stem cells may arise through a "reprogramming-like" mechanism. A rebalancing of the LIN28/let-7 regulatory loop could be a novel therapeutic strategy to target ALDH1 + cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.