Plant disease can be effectively suppressed in intercropping systems. Our previous study demonstrated that neighboring maize plants can restrict the spread of soil-borne pathogens of pepper plants by secreting defense compounds into the soil. However, whether maize plant can receive benefits from its neighboring pepper plants in an intercropping system is little attention. We examined the effects of maize roots treated with elicitors from the pepper pathogen Phytophthora capsici and pepper root exudates on the synthesis of 1,4-benzoxazine-3-ones (BXs), the expression of defense-related genes in maize, and their ability to alleviate the severity of southern corn leaf blight (SCLB) caused by Bipolaris maydis. We found that SCLB was significantly reduced after the above treatments. The contents of 1,4-benzoxazine-3-ones (BXs: DIBOA, DIMBOA, and MBOA) and the expression levels of BX synthesis and defense genes in maize roots and shoots were up-regulated. DIMBOA and MBOA effectively inhibited the mycelium growth of Bipolaris maydis at physiological concentrations in maize shoots. Further studies suggested that the defense related pathways or genes in maize roots and shoots were activated by elicitors from the P. capsici or pepper root exudates. In conclusion, maize increased the levels of BXs and defense gene expression both in roots and shoots after being triggered by root exudates and pathogen from neighboring pepper plants, eventually enhancing its resistance.
Panax notoginseng is a highly valuable medicinal herb, but its culture is strongly hindered by replant failure, mainly due to autotoxicity. Deciphering the response mechanisms of plants to autotoxins is critical for overcoming the observed autotoxicity. Here, we elucidated the response of P. notoginseng to the autotoxic ginsenoside Rg1 via transcriptomic and cellular approaches. Cellular analyses demonstrated that Rg1 inhibited root growth by disrupting the cell membrane and wall. Transcriptomic analyses confirmed that genes related to the cell membrane, cell wall decomposition and reactive oxygen species (ROS) metabolism were up-regulated by Rg1 stress. Further cellular analyses revealed that Rg1 induced ROS (O2·- and H2O2) accumulation in root cells by suppressing ascorbate peroxidase (APX) and the activities of enzymes involved in the ascorbate-glutathione (ASC-GSH) cycle. Exogenous antioxidants (ASC and gentiobiose) helped cells scavenge over-accumulated ROS by promoting superoxide dismutase (SOD) activity and the ASC-GSH cycle. Collectively, the autotoxin Rg1 caused root cell death by inducing the over-accumulation of ROS, and the use of exogenous antioxidants could represent a strategy for overcoming autotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.