Although phase transitions have long been a centerpiece of condensed matter materials science studies, a number of recent efforts focus on potentially exploiting the resulting functional property changes in novel electronics and photonics as well as understanding emergent phenomena. This is quite timely, given a grand challenge in twenty-first-century physical sciences is related to enabling continued advances in information processing and storage beyond conventional CMOS scaling. In this brief review, we discuss synthesis of strongly correlated oxides, mechanisms of metal-insulator transitions, and exploratory electron devices that are being studied. Particular emphasis is placed on vanadium dioxide, which undergoes a sharp metal-insulator transition near room temperature at ultrafast timescales. The article begins with an introduction to metal-insulator transition in oxides, followed by a brief discussion on the mechanisms leading to the phase transition. The role of materials synthesis in influencing functional properties is discussed briefly. Recent efforts on realizing novel devices such as field effect switches, optical detectors, nonlinear circuit components, and solid-state sensors are reviewed. The article concludes with a brief discussion on future research directions that may be worth consideration.
We show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media. This design is implemented with an ultra-thin ($k/65) vanadium dioxide (VO 2) layer on sapphire, temperature tuned in the vicinity of the VO 2 insulator-tometal phase transition, leading to 99.75% absorption at k ¼ 11.6 lm. The structural simplicity and large tuning range (from $80% to 0.25% in reflectivity) are promising for thermal emitters, modulators, and bolometers. V
Reproducible Sb-doped p-type ZnO films were grown on n-Si (100) by electron-cyclotron-resonance-assisted molecular-beam epitaxy. The existence of Sb in ZnO:Sb films was confirmed by low-temperature photoluminescence measurements. An acceptor-bound exciton (A°X) emission was observed at 3.358 eV at 8 K. The acceptor energy level of the Sb dopant is estimated to be 0.2 eV above the valence band. Temperature-dependent Hall measurements were performed on Sb-doped ZnO films. At room temperature, one Sb-doped ZnO sample exhibited a low resistivity of 0.2Ωcm, high hole concentration of 1.7×1018cm−3 and high mobility of 20.0cm2∕Vs. This study suggests that Sb is an excellent dopant for reliable and reproducible p-type ZnO fabrication.
Electrically driven metal-insulator transition in vanadium dioxide (VO 2 ) is of interest in emerging memory devices, neural computation, and high speed electronics. We report on the fabrication of out-of-plane VO 2 metal-insulator-metal (MIM) structures and reproducible high-speed switching measurements in these two-terminal devices. We have observed a clear correlation between electrically-driven ON/OFF current ratio and thermally-induced resistance change during metal-insulator transition. It is also found that sharp metal-insulator transition could be triggered by external voltage pulses within 2 ns at room temperature and the achieved ON/OFF ratio is greater than two orders of magnitude with good endurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.