Increased plasminogen activator inhibitor 1 (PAI-1) has been linked to not only thrombosis and fibrosis but also to obesity and insulin resistance. Increased PAI-1 levels have been presumed to be consequent to obesity. We investigated the interrelationships of PAI-1, obesity, and insulin resistance in a high-fat/high-carbohydrate (HF) diet-induced obesity model in wild-type (WT) and PAI-1-deficient mice (PAI-1 ؊/؊ ). Obesity and insulin resistance developing in WT mice on an HF diet were completely prevented in mice lacking PAI-1. PAI-1 ؊/؊ mice on an HF diet had increased resting metabolic rates and total energy expenditure compared with WT mice, along with a marked increase in uncoupling protein 3 mRNA expression in skeletal muscle, likely mechanisms contributing to the prevention of obesity. In addition, insulin sensitivity was enhanced significantly in PAI-1 ؊/؊ mice on an HF diet, as shown by euglycemichyperinsulinemic clamp studies. Peroxisome proliferator-activated receptor (PPAR)-␥ and adiponectin mRNA, key control molecules in lipid metabolism and insulin sensitivity, were maintained in response to an HF diet in white adipose tissue in PAI-1 ؊/؊ mice, contrasting with downregulation in WT mice. This maintenance of PPAR-␥ and adiponectin may also contribute to the observed maintenance of body weight and insulin sensitivity in PAI-1 ؊/؊ mice. Treatment in WT mice on an HF diet with the angiotensin type 1 receptor antagonist to downregulate PAI-1 indeed inhibited PAI-1 increases and ameliorated diet-induced obesity, hyperglycemia, and hyperinsulinemia. PAI-1 deficiency also enhanced basal and insulin-stimulated glucose uptake in adipose cells in vitro. Our data suggest that PAI-1 may not merely increase in response to obesity and insulin resistance, but may have a direct causal role in obesity and insulin resistance. Inhibition of PAI-1 might provide a novel anti-obesity and anti-insulin resistance treatment. Diabetes 53: 336 -346, 2004
Prostaglandins (PGs) are ubiquitous lipid mediators derived from cyclooxygenase metabolism of arachidonic acid that exert a broad range of physiologic activities, including modulation of inflammation, ovulation and arterial blood pressure. PGE2, a chief cyclooxygenase product, modulates blood pressure and fertility, although the specific G protein-coupled receptors mediating these effects remain poorly defined. To evaluate the physiologic role of the PGE2 EP2 receptor subtype, we created mice with targeted disruption of this gene (EP2-/-). EP2-/- mice develop normally but produce small litters and have slightly elevated baseline systolic blood pressure. In EP2-/- mice, the characteristic hypotensive effect of intravenous PGE2 infusion was absent; PGE2 infusion instead produced hypertension. When fed a diet high in salt, the EP2-/- mice developed profound systolic hypertension, whereas wild-type mice showed no change in systolic blood pressure. Analysis of wild-type and EP2-/- mice on day 5 of pregnancy indicated that the reduced litter size of EP2-/- mice is due to a pre-implantation defect. This reduction of implanted embryos could be accounted for by impaired ovulation and dramatic reductions in fertilization observed on day 2 of pregnancy. These data demonstrate that the EP2 receptor mediates arterial dilatation, salt-sensitive hypertension, and also plays an essential part in female fertility.
Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. PPARs play an important role in the general transcriptional control of numerous cellular processes, including lipid metabolism, glucose homeostasis, cell cycle progression, cell differentiation, inflammation and extracellular matrix remodeling. Three PPAR isoforms, designated PPARalpha, PPARbeta and PPARgamma, have been cloned and are differentially expressed in several tissues including the kidney. PPARalpha primary regulates lipid metabolism and modulates inflammation. PPARalpha is the molecular target of the hypolipidemic fibrates including bezafibrate and clofibrate. PPARbeta participates in embryonic development, implantation and bone formation. PPARgamma is a key factor in adipogenesis and also plays an important role in insulin sensitivity, cell cycle regulation and cell differentiation. Antidiabetic thiazolidinediones (TZDs) such as troglitazone and rosiglitazone are specific ligands of PPARgamma, and this interaction is responsible for the insulin-sensitizing and hypoglycemic effect of these drugs. The kidney has been shown to differentially express all PPAR isoforms. PPARalpha is predominantly expressed in proximal tubules and medullary thick ascending limbs, while PPARgamma is expressed in medullary collecting ducts, pelvic urothelium and glomerular mesangial cells. PPARbeta is ubiquitously expressed at low levels in all segments of nephron. Accumulating data has begun to emerge suggesting physiological and pathophysiological roles of PPARs in several tissues including the kidney. The availability of PPAR-selective agonists and antagonists may provide a new approach to modulate the renal response to diseases including glomerulonephritis, glomerulosclerosis and diabetic nephropathy.
Nonalcoholic fatty liver disease (NAFLD) is characterized by a massive accumulation of lipid droplets (LDs). The aim of this study was to determine the function of 17β-hydroxysteroid dehydrogenase-13 (17β-HSD13), one of our newly identified LD-associated proteins in human subjects with normal liver histology and simple steatosis, in NAFLD development. LDs were isolated from 21 human liver biopsies, including 9 cases with normal liver histology (group 1) and 12 cases with simple steatosis (group 2). A complete set of LD-associated proteins from three liver samples of group 1 or group 2 were determined by 2D LC-MS/MS. By comparing the LD-associated protein profiles between subjects with or without NAFLD, 54 up-regulated and 35 down-regulated LD-associated proteins were found in NAFLD patients. Among them, 17β-HSD13 represents a previously unidentified LD-associated protein with a significant up-regulation in NAFLD. Because the 17β-HSD family plays an important role in lipid metabolism, 17β-HSD13 was selected for validating the proteomic findings and exploring its role in the pathogenesis of NAFLD. Increased hepatic 17β-HSD13 and its LD surface location were confirmed in db/db (diabetic) and high-fat diet-fed mice. Adenovirusmediated hepatic overexpression of human 17β-HSD13 induced a fatty liver phenotype in C57BL/6 mice, with a significant increase in mature sterol regulatory element-binding protein 1 and fatty acid synthase levels. The present study reports an extensive set of human liver LD proteins and an array of proteins differentially expressed in human NAFLD. We also identified 17β-HSD13 as a pathogenic protein in the development of NAFLD.lipogenesis | SCDR9 | HSDI7β13
Functional and biochemical data have suggested a role for the cytochrome P450 arachidonate monooxygenases in the pathophysiology of hypertension, a leading cause of cardiovascular, cerebral, and renal morbidity and mortality. We show here that disruption of the murine cytochrome P450, family 4, subfamily a, polypeptide 10 (Cyp4a10) gene causes a type of hypertension that is, like most human hypertension, dietary salt sensitive. Cyp4a10 -/-mice fed low-salt diets were normotensive but became hypertensive when fed normal or high-salt diets. Hypertensive Cyp4a10 -/-mice had a dysfunctional kidney epithelial sodium channel and became normotensive when administered amiloride, a selective inhibitor of this sodium channel. These studies (a) establish a physiological role for the arachidonate monooxygenases in renal sodium reabsorption and blood pressure regulation, (b) demonstrate that a dysfunctional Cyp4a10 gene causes alterations in the gating activity of the kidney epithelial sodium channel, and (c) identify a conceptually novel approach for studies of the molecular basis of human hypertension. It is expected that these results could lead to new strategies for the early diagnosis and clinical management of this devastating disease. IntroductionPrevalence, complexity, and multiple medical and socioeconomic consequences make hypertension a major health challenge for most of the Western world (1). While environmental factors and coexist ing conditions play a role in the development and progression of hypertension, segregation and linkage analyses indicate that mul tiple genetic factors contribute to its complex etiology (2-7). Fur thermore, clinical studies show that the cardiovascular and renal morbidity and mortality resulting from hypertension are markedly reduced by timely diagnosis and early clinical intervention (1). As the kidneys play a central role in the control of body salt and fluid balance, they are frequent targets for the treatment of hypertension, especially those forms sensitive to dietary salt (2-5). However, since the molecular basis of prevalent forms of the disease remains uncer tain, its early diagnosis and treatment are largely symptomatic. It is expected that the identification of novel pathways/genes involved in blood pressure variations (3, 6, 7) will lead to new therapeutic targets and to improved diagnosis and prevention. Indeed, early detection and treatment are urgently needed to prevent the dangerous and profound consequences of untreated chronic hypertension.The metabolism of endogenous arachidonic acid (AA) to epoxy eicosatrienoic acids (EETs) and 20hydroxyeicosatetraenoic acid
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.