Mechanism of zinc iron removal by zerovalent iron was discussed through zinc removal responses to several operational conditions of a packed column reactor with zero-valent iron powder. The adsorption isotherm observed implied that a kind of chemisorption was responsible for zinc removal. Zinc removal by zero-valent iron was enhanced by dissolved oxygen and ferric ion addition. However, it was deteriorated under acidic pH. In addition, zinc adsorbed on zero-valent iron was eluted by a reducing agent such as citric acid, whereas the zinc was not eluted by diluted sulfuric acid. Consequently, the zinc removal mechanism by zero-valent iron was inferred to be as follows: Zero-valent iron was firstly corroded and oxidized into ferric ion by dissolved oxygen. The ferric ion was precipitated as iron hydroxide onto the surface of the zero-valent iron powder. Zinc ion was adsorbed on and/or coprecipitated with the iron hydroxide. The iron hydroxide was finally oxidized and transformed into iron oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.