Influenza vaccines that can be administered intranasally or by other needle-free delivery routes have potential advantages over injected formulations in terms of patient compliance, cost, and ease of global distribution. Supramolecular peptide nanofibers have been investigated previously as platforms for vaccines and immunotherapies and have been shown to raise immune responses in the absence of exogenous adjuvants and without measurable inflammation. However, at present it has not been tested whether the immunogenicity of these materials extends to the intranasal route. Here we investigated the extent to which self-assembled peptide nanofibers bearing an influenza peptide epitope elicit antigen-specific CD8 T cell responses when delivered intranasally, and we compared these responses with those elicited by subcutaneous immunization. Peptides containing an epitope from influenza acid polymerase (PA) and the Q11 self-assembly domain formed nanofibers that were avidly taken up by dendritic cells in lung-draining mediastinal lymph nodes after intranasal immunization. Intranasally delivered nanofibers generated greater antigen-specific CD8 T cell responses in the lung-draining lymph nodes than subcutaneous immunizations while retaining the non-inflammatory character of the materials observed in other delivery sites. The CD8 T cells elicited systemically were functional as assessed by their ability to produce IFN-γ ex vivo, lyse epitope-pulsed target cells in vivo, and diminish viral loads in infected mice. Compared to subcutaneously delivered nanofibers, intranasally delivered peptide nanofibers significantly increased the number of persisting antigen-specific tissue resident memory CD8 T cells in the lung, allowing for a more rapid response to infection at 6 weeks post-vaccination. These results indicate that intranasally delivered self-assembled peptide nanofibers are immunogenic when delivering CD8 epitopes without adjuvant or CD4 epitopes, are non-inflammatory, and promote more lung-resident memory CD8 T cells compared to subcutaneous immunization.
The first example of a naturally occurring thiopyranchromenone, preussochromone A (1), and five other new chromone derivatives, preussochromones B-F (2-6), were isolated from solid cultures of an endolichenic fungus, Preussia africana. The structures of 1-6 were established primarily by NMR experiments, and 2 and 4 were further confirmed by X-ray crystallography. The absolute configurations of 1 and 2 were determined by the application of electronic circular dichroism (ECD), whereas those of C-5 in 3, C-6 in 4, and the 6,7-diol in 5 were deduced via the CD data of the in situ formed [Rh₂(OCOCF₃)₄] complex, the modified Mosher method, and Snatzke's method, respectively. Compounds 1 and 3 showed significant cytotoxicity against A549 cells.
Seven new indole alkaloids, bruceollines H-N (1-7), three new quassinoids, yadanziolides T-V (10-12), and four known analogues, bruceolline E (8), bruceolline F (9), bruceine D (13), and yadanziolide B (14), were isolated from an ethanol extract of the stems of Brucea mollis. The absolute configurations of compounds 2 and 5 were determined by comparison of their experimental and calculated ECD spectra. The absolute configuration of the known compound 9 was determined by using Mo2(OAc)4-induced CD analysis for the first time. Compounds 10, 13, and 14 exhibited cytotoxic activities with IC50 values of 3.00-5.81 μM.
Hepatocellular carcinoma (HCC) and liver cirrhosis are associated with high mortality worldwide. Currently, alpha-fetoprotein (AFP) is used as a standard serum marker for the detection of HCC, but its sensitivity and specificity are unsatisfactory, and optimal diagnostic markers for cirrhosis are lacking. We previously reported that growth differentiation factor 15 (GDF15) was significantly induced in HCV-infected hepatocytes. This study aimed to investigate GDF15 expression and its correlation with hepatitis virus-related liver diseases. A total of 412 patients with various liver diseases were studied. Healthy and Mycobacterium tuberculosis-infected subjects were included as controls. Serum and tissue GDF15 levels were measured. Serum GDF15 levels were significantly increased in patients with HCC (6.66±0.67 ng/mL, p<0.0001) and cirrhosis (6.51±1.47 ng/mL, p<0.0001) compared with healthy controls (0.31±0.01 ng/mL), though the GDF15 levels in HBV and HCV carriers were moderately elevated (1.34±0.19 ng/mL and 2.13±0.53 ng/mL, respectively). Compared with HBV or HCV carriers, GDF15 had a sensitivity of 63.1% and a specificity of 86.6% at the optimal cut-off point of 2.463 ng/mL in patients with liver cirrhosis or HCC. In HCC patients, the area under the receiver operating curve was 0.84 for GDF15 and 0.76 for AFP, but 0.91 for the combined GDF15 and AFP. Serum GDF15 levels did not significantly differ between the high-AFP and low-AFP groups. GDF15 protein expression in HCC was significantly higher than that in the corresponding adjacent paracarcinomatous tissue and normal liver. Using a combination of GDF15 and AFP will improve the sensitivity and specificity of HCC diagnosis. Further research and the clinical implementation of serum GDF15 measurement as a biomarker for HCC and cirrhosis are recommended.
Hepatitis C virus (HCV) entry is a complicated process that requires multiple host factors, such as CD81, scavenger receptor BI, claudin-1 (CLDN1), and occludin. The interaction of virus and cellular entry factors represents a promising target for novel anti-HCV drug development. In this study, we sought to identify peptide inhibitors for HCV entry by screening a library of overlapping peptides covering the four above-mentioned entry factors. An 18–amino acid peptide (designated as CL58) that was derived from the CLDN1 intracellular and first transmembrane region inhibited both de novo and established HCV infection in vitro. Unlike previously reported peptides corresponding to CLDN1 extracellular loops, CL58 did not alter the normal distribution of CLDN1 and was not cytotoxic in vitro at concentrations nearly 100-fold higher than the effective antiviral dose. The inhibitory effect of CL58 appeared to occur at a late step during viral entry, presumably after initial binding. Finally, overexpressed CL58 was able to interact with HCV envelope proteins. Conclusion We identified a novel CLDN1-derived peptide that inhibits HCV entry at a postbinding step. The findings expand our knowledge of the roles that CLDN1 play in HCV entry and highlight the potential for developing a new class of inhibitors targeting the viral entry process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.