Genome integrity is continuously threatened by external stresses and endogenous hazards such as DNA replication errors and reactive oxygen species. The DNA damage checkpoint in metazoans ensures genome integrity by delaying cell-cycle progression to repair damaged DNA or by inducing apoptosis. ATM and ATR (ataxia-telangiectasia-mutated and -Rad3-related) are sensor kinases that relay the damage signal to transducer kinases Chk1 and Chk2 and to downstream cell-cycle regulators. Plants also possess ATM and ATR orthologs but lack obvious counterparts of downstream regulators. Instead, the plant-specific transcription factor SOG1 (suppressor of gamma response 1) plays a central role in the transmission of signals from both ATM and ATR kinases. Here we show that in Arabidopsis, endoreduplication is induced by DNA double-strand breaks (DSBs), but not directly by DNA replication stress. When root or sepal cells, or undifferentiated suspension cells, were treated with DSB inducers, they displayed increased cell size and DNA ploidy. We found that the ATM-SOG1 and ATR-SOG1 pathways both transmit DSB-derived signals and that either one suffices for endocycle induction. These signaling pathways govern the expression of distinct sets of cell-cycle regulators, such as cyclin-dependent kinases and their suppressors. Our results demonstrate that Arabidopsis undergoes a programmed endoreduplicative response to DSBs, suggesting that plants have evolved a distinct strategy to sustain growth under genotoxic stress.root meristem | protein degradation D amaged DNA needs to be repaired to prevent loss or incorrect transmission of genetic information. Eukaryotic DNA damage checkpoints delay or arrest the cell cycle to provide time for DNA repair before the cell enters a new round of DNA replication or mitosis (1). In metazoans, ATM and ATR (ataxia-telangiectasia-mutated and -Rad3-related) are sensor kinases that play a crucial role in the checkpoint system. ATM specifically responds to DNA double-strand breaks (DSBs), and ATR primarily senses replication stress caused by a persistent block of replication fork progression. ATM deficiency confers hypersensitivity to ionizing radiation (2), whereas ATR knockout mutation is lethal (3, 4), and dominant-negative cell lines display hypersensitivity to UVB light, gamma radiation, hydroxyurea (HU), and aphidicolin (5, 6). ATM and ATR relay the damage signal to transducer kinases Chk2 and Chk1, respectively, which then amplify the signal and regulate an overlapping set of substrates that trigger cell-cycle arrest and DNA repair (1). The transcription factor p53, cyclin-dependent kinase (CDK) inhibitor p21, and Cdc25 phosphatase are downstream regulators that control cell-cycle arrest in response to DNA damage.Comparative sequence analyses among plants, yeast, and animals indicate that some of the factors involved in DNA damage checkpoint and DSB repair systems are conserved between vertebrates and plants (7). Plants also possess ATM and ATR orthologs, and knockout mutants show similar phenotypes...
Arabidopsis thaliana DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) functions as a transcriptional activator that increases tolerance to osmotic and heat stresses; however, its expression also leads to growth retardation and reduced reproduction. To avoid these adverse effects, the expression of DREB2A is predicted to be tightly regulated. We identified a short promoter region of DREB2A that represses its expression under nonstress conditions. Yeast one-hybrid screening for interacting factors identified GROWTH-REGULATING FACTOR7 (GRF7). GRF7 bound to the DREB2A promoter and repressed its expression. In both artificial miRNA-silenced lines and a T-DNA insertion line of GRF7, DREB2A transcription was increased compared with the wild type under nonstress conditions. A previously undiscovered ciselement, GRF7-targeting cis-element (TGTCAGG), was identified as a target sequence of GRF7 in the short promoter region of DREB2A via electrophoretic mobility shift assays. Microarray analysis of GRF7 knockout plants showed that a large number of the upregulated genes in the mutant plants were also responsive to osmotic stress and/or abscisic acid. These results suggest that GRF7 functions as a repressor of a broad range of osmotic stress-responsive genes to prevent growth inhibition under normal conditions.
SummaryWe have developed a novel gain-of-function system that we have named the FOX hunting system (Full-length cDNA Over-eXpressing gene hunting system). We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. About 10 000 independent full-length Arabidopsis cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Each transgenic Arabidopsis contained on average 2.6 cDNA clones and was monitored under various categories such as morphological changes, fertility and leaf color. We found 1487 possible morphological mutants from 15 547 transformants. When 115 pale green T 1 mutants were analyzed, 59 lines represented the mutant phenotypes in more than 50% of the T 2 progeny. Characterization of two leaf color mutants revealed the significance of this approach. We also document mutants from several categories and their corresponding full-length cDNAs.
SUMMARYBecause of ever-increasing environmental deterioration it is likely that the influx of UV-B radiation (280-320 nm) will increase as a result of the depletion of stratospheric ozone. Given this fact it is essential that we better understand both the rapid and the adaptive responses of plants to UV-B stress. Here, we compare the metabolic responses of wild-type Arabidopsis with that of mutants impaired in flavonoid (transparent testa 4, tt4; transparent testa 5, tt5) or sinapoyl-malate (sinapoylglucose accumulator 1, sng1) biosynthesis, exposed to a short 24-h or a longer 96-h exposure to this photo-oxidative stress. In control experiments we subjected the genotypes to long-day conditions as well as to 24-and 96-h treatments of continuous light. Following these treatments we evaluated the dynamic response of metabolites including flavonoids, sinapoyl-malate precursors and ascorbate, which are well known to play a role in cellular protection from UV-B stress, as well as a broader range of primary metabolites, in an attempt to more fully comprehend the metabolic shift following the cellular perception of this stress. Our data reveals that short-term responses occur only at the level of primary metabolites, suggesting that these effectively prime the cell to facilitate the later production of UV-B-absorbing secondary metabolites. The combined results of these studies together with transcript profiles using samples irradiated by 24-h UV-B light are discussed in the context of current models concerning the metabolic response of plants to the stress imposed by excessive UV-B irradiation.
Plant growth and crop yields are limited by high-temperature stresses. In this study, we attempted to isolate the rice genes responsible for high-temperature stress tolerance using a transformed Arabidopsis population expressing a full-length cDNA library of rice. From approximately 20,000 lines of transgenic Arabidopsis, we isolated a thermotolerant line, R04333, that could survive transient heat stress at the cotyledon stage. The rice cDNA inserted in R04333 encodes OsHsfA2e, a member of the heat stress transcription factors. The thermotolerant phenotype was observed in newly constructed transgenic Arabidopsis plants expressing OsHsfA2e. Among 5 A2-type HSF genes encoded in the rice genome, four genes, including OsHsfA2e, are induced by high temperatures in rice seedlings. The OsHsfA2e protein was localized to the nuclear region and exhibited transcription activation activity in the C-terminal region. Microarray analysis demonstrated that under unstressed conditions transgenic Arabidopsis overexpressing OsHsfA2e highly expressed certain stress-associated genes, including several classes of heat-shock proteins. The thermotolerant phenotype was observed not only in the cotyledons but also in rosette leaves, inflorescence stems and seeds. In addition, transgenic Arabidopsis exhibited tolerance to high-salinity stress. These observations suggest that the OsHsfA2e may be useful in molecular breeding designed to improve the environmental stress tolerance of crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.