Background. This study aimed to determine the perioperative change in serum double-strand DNA (dsDNA) as a marker potentially reflecting neutrophil extracellular trap concentration in samples from patients undergoing cardiac surgery and to analyze a relationship between serum dsDNA concentrations and perioperative renal dysfunction. Methods. Serum dsDNA concentrations in samples that were collected during a previously conducted, prospective, multicenter, observational study were measured. Eighty patients undergoing elective cardiac surgery were studied. Serum samples were collected at baseline, immediately after surgery, and the day after surgery (POD-1). Results. Serum dsDNA concentration was significantly increased from baseline (median, 398 ng/mL [interquartile range, 372–475 ng/mL]) to immediately after surgery (median, 540 ng/mL [437–682 ng/mL], p < 0.001), and they were reduced by POD-1 (median, 323 ng/mL [256–436 ng/mL]). The difference in serum creatinine concentration between baseline and POD-1 was correlated with dsDNA concentration on POD-1 (r
s = 0.61, p < 0.001). Conclusions. In patients undergoing cardiac surgery, serum dsDNA concentration is elevated postoperatively. Prolonged elevation in dsDNA concentration is correlated with perioperative renal dysfunction. Further large-scale studies are needed to determine the relationship between serum concentration of circulating dsDNA and perioperative renal dysfunction.
PurposePropofol infusion syndrome (PRIS) is a lethal condition caused by propofol overdose. Previous studies suggest that pathophysiological mechanisms underlying PRIS involve mitochondrial dysfunction; however, these mechanisms have not been fully elucidated. This study aimed to establish an experimental model of propofol-induced cytotoxicity using cultured human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to determine the mechanisms behind propofol-induced mitochondrial dysfunction, and to evaluate the protective effects of coenzyme Q10 (CoQ10).MethodsHuman iPSC-derived cardiomyocytes were exposed to propofol (0, 2, 10, or 50 µg/ml) with or without 5 µM CoQ10. Mitochondrial function was assessed by measuring intracellular ATP, lactate concentrations in culture media, NAD+/NADH ratio, and the mitochondrial membrane potential. Propofol-induced cytotoxicity was evaluated by analysis of cell viability. Expression levels of genes associated with mitochondrial energy metabolism were determined by PCR. Intracellular morphological changes were analyzed by confocal microscopy.ResultsTreatment with 50 µg/ml propofol for 48 h reduced cell viability. High concentrations of propofol (≥ 10 µg/ml) induced mitochondrial dysfunction accompanied by downregulation of gene expression of PGC-1alpha and its downstream targets (NDUFS8 and SDHB, which are involved in the respiratory chain reaction; and CPT1B, which regulates beta-oxidation). Cardiomyocytes co-treated with 5 µM CoQ10 exhibited resistance to propofol-induced toxicity through recovery of gene expression.ConclusionsPropofol-induced cytotoxicity in human iPSC-derived cardiomyocytes may be associated with mitochondrial dysfunction via downregulation of PGC-1alpha-regulated genes associated with mitochondrial energy metabolism. Co-treatment with CoQ10 protected cardiomyocytes from propofol-induced cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.