Macrophage type-I and type-II class-A scavenger receptors (MSR-A) are implicated in the pathological deposition of cholesterol during atherogenesis as a result of receptor-mediated uptake of modified low-density lipoproteins (mLDL). MSR-A can bind an extraordinarily wide range of ligands, including bacterial pathogens, and also mediates cation-independent macrophage adhesion in vitro. Here we show that targeted disruption of the MSR-A gene in mice results in a reduction in the size of atherosclerotic lesions in an animal deficient in apolipoprotein E. Macrophages from MSR-A-deficient mice show a marked decrease in mLDL uptake in vitro, whereas mLDL clearance from plasma occurs at a normal rate, indicating that there may be alternative mechanisms for removing mLDL from the circulation. In addition, MSR-A-knockout mice show an increased susceptibility to infection with Listeria monocytogenes or herpes simplex virus type-1, indicating that MSR-A may play a part in host defence against pathogens.
Although thousands of long noncoding RNAs (lncRNAs) are localized in the nucleus, only a few dozen have been functionally characterized. Here we show that nuclear enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, is induced by influenza virus and herpes simplex virus infection as well as by Toll-like receptor3-p38 pathway-triggered poly I:C stimulation, resulting in excess formation of paraspeckles. We found that NEAT1 facilitates the expression of antiviral genes including cytokines such as interleukin-8 (IL8). We found that splicing factor proline/glutamine-rich (SFPQ), a NEAT1-binding paraspeckle protein, is a repressor of IL8 transcription, and that NEAT1 induction relocates SFPQ from the IL8 promoter to the paraspeckles, leading to transcriptional activation of IL8. Together, our data show that NEAT1 plays an important role in the innate immune response through the transcriptional regulation of antiviral genes by the stimulus-responsive cooperative action of NEAT1 and SFPQ.
Human atherosclerotic lesions overexpress the lysosomal cysteine protease cathepsin S (Cat S), one of the most potent mammalian elastases known. In contrast, atheromata have low levels of the endogenous Cat S inhibitor cystatin C compared with normal arteries, suggesting involvement of this protease in atherogenesis. The present study tested this hypothesis directly by crossing Cat S-deficient (CatS -/-) mice with LDL receptor-deficient (LDLR -/-) mice that develop atherosclerosis on a high-cholesterol diet. Compared with LDLR -/-mice, double-knockout mice (CatS -/-LDLR -/-) developed significantly less atherosclerosis, as indicated by plaque size (plaque area and intimal thickening) and stage of development. These mice also had markedly reduced content of intimal macrophages, lipids, smooth muscle cells, collagen, CD4 + T lymphocytes, and levels of IFN-γ. CatS -/-LDLR -/-monocytes showed impaired subendothelial basement membrane transmigration, and aortas from CatS -/-LDLR -/-mice had preserved elastic laminae. These findings establish a pivotal role for Cat S in atherogenesis.
Hypoxia-inducible factor 1 (HIF1) is a master regulator of adaptive gene expression under hypoxia. However, a role for HIF1 in the epigenetic regulation remains unknown. Genome-wide analysis of HIF1 binding sites (chromatin immunoprecipitation [ChIP] with deep sequencing) of endothelial cells clarified that HIF1 mainly binds to the intergenic regions distal from transcriptional starting sites under both normoxia and hypoxia. Next, we examined the temporal profile of gene expression under hypoxic conditions by using DNA microarrays. We clarified that early hypoxia-responsive genes are functionally associated with glycolysis, including GLUT3 (SLC2A3). Acetylated lysine 27 of histone 3 covered the HIF1 binding sites, and HIF1 functioned as an enhancer of SLC2A3 by interaction with lysine (K)-specific demethylase 3A (KDM3A). Knockdown of HIF1␣ and KDM3A showed that glycolytic genes are regulated by both HIF1 and KDM3A and respond to hypoxia in a manner independent of cell type specificity. We elucidated that both the chromatin conformational structure and histone modification change under hypoxic conditions and enhance the expression of SLC2A3 based on the combined results of chromatin conformation capture (3C) and ChIP assays. KDM3A is recruited to the SLC2A3 locus in an HIF1-dependent manner and demethylates H3K9me2 so as to upregulate its expression. These findings provide novel insights into the interaction between HIF1 and KDM3A and also the epigenetic regulation of HIF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.