Viscosity, a crucial characteristic for rice palatability, is affected by endosperm characters. We compared correlations between differences in viscosity of japonica rice with various palatability and endosperm characters. Changes in apparent amylose and protein contents (AAC% and PC%, respectively) and amylopectin side-chain distribution and the relationship of these traits with palatability were investigated in superior and inferior spikelets of good cultivars with low amylose content from Hokkaido and common cultivars from northeastern Japan, using rapid visco analyzer characteristics and rice-grain microstructures. Significant differences occurred in PC%, AAC%, breakdown, setback, peak time, and pasting temperature of different cultivars and grain positions. Amylopectin components showed remarkable differences in grain surfaces, surface layers, and section structure between the grain varieties. Hokkaido cultivars showed better viscosity than northeastern cultivars, particularly initial stage grains. Correlation analysis indicated viscosity was mainly AAC%-dependent, whereas differences in endosperm characteristics between spikelet positions were mainly due to grain-filling temperature.
Effects of organic (Italian ryegrass and Bokashi) and chemical fertilizer on growth, yield, and grain quality of rice (Oryza sativa L.) were compared under different planting densities in 2013/2014 and 2014/2015. Italian ryegrass was incorporated into the soil as green manure. Bokashi (a mixture of organic materials) was applied as basal dressing. To measure yield and its components, 30 hills were chosen for each treatment. Rice grains were harvested from each treatment to assess the grain quality and to evaluate accumulation structures using a scanning electron microscope. Bokashi treatment increased panicle number per hill, ripened grain percentage, panicle number per m 2 , and grain yield compared to no fertilizer treatment at normal planting density. Chemical fertilizer treatment increased plant length at high planting density. Italian ryegrass and Bokashi treatments promoted the taste point (taste score as reference) by reduction of amylose and protein contents at normal planting density in contrast to chemical fertilizer. 1000-grain weight, panicle number per m 2 , and grain yield were higher at high planting density than at normal planting density. However, high planting density decreased panicle number per hill and spikelet number per panicle. It also enhanced the amylose content of rice grain. Scanning electron microscopic observation revealed that chemical fertilizer treatment marked up protein bodies and their traces on amyloplasts. However, Bokashi treatment produced large amyloplasts, which included many starch granules. These results show that Italian ryegrass and Bokashi can offset reductions of chemical fertilizer and can lead to sufficient starch accumulation structures in rice grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.