As a viscohyperelastic material, filled rubber is widely used as a damping element in mechanical engineering and vehicle engineering. Academic and industrial researchers commonly need to evaluate the fatigue life of these rubber components under cyclic load, quickly and efficiently. The currently used method for fatigue life evaluation is based on the S–N curve, which requires very long and costly fatigue tests. In this paper, fatigue-to-failure experiments were conducted using an hourglass rubber specimen; during testing, the surface temperature of the specimen was measured with a thermal imaging camera. Due to the hysteresis loss during cyclic deformation, the temperature of the material was found to first rise and then level off to a steady state temperature, and then it rose sharply again as failure approached. The S–N curve in the traditional sense was experimentally determined using the maximum principal strain as the fatigue parameter, and a relationship between the steady state temperature increase and the maximum principal strain was then established. Consequently, the steady state temperature increase was connected with the fatigue life. A couple of thousand cycles was sufficient for the temperature to reach its steady state value during fatigue testing, which was less than one tenth of the fatigue life, so the fatigue life of the rubber component could be efficiently assessed by the steady state temperature increase.
The mechanical behaviour of carbon-black (CB)-filled rubber is temperature-dependent. It is assumed that temperature affects the fatigue life of rubber products by changing the tear energy of the material. The static tearing behaviour and fatigue crack propagation behavior of CB-filled rubber at different temperatures were investigated in this study. The critical tear energy of the material was measured through static tear fracture tests at different temperatures; it is shown that the critical tear energy decreases exponentially with increasing temperature. A fatigue crack growth test of a constrained precracked planar tension specimen was conducted at room temperature; the measurements verify that the fatigue crack growth follows a Paris–Erdogan power law. Considering the temperature dependence of the critical tear energy, the temperature dependent fatigue crack growth kinetics of CB-filled rubber was established, and the fatigue life of the material at high temperatures was predicted based on the kinetics. The predictions are in good agreement with experimental measurements.
Below the incipient characteristic tearing energy (T0), cracks will not grow in rubber under fatigue loading. Hence, determination of the characteristic tearing energy T0 is very important in the rubber industry. A rubber cutting experiment was conducted to determine the T0, using the cutting method proposed originally by Lake and Yeoh. Then, a fatigue crack propagation experiment on a edge-notched pure shear specimen under variable amplitude loading was studied. A method to obtain the crack propagation rate da/dN from the relationship of the crack propagation length (Δa) with the number of cycles (N) is proposed. Finally, the T0 obtained from the cutting method is compared with the value decided by the fatigue crack propagation experiment. The values of T0 obtained from the two different methods are a little different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.